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Introduction 
This article is an introduction to random number generators (RNGs). The main goal is to 

present a starting point for programmers needing to make decisions about RNG choice 

and implementation. A second goal is to present better alternatives for the ubiquitous 

Mersenne Twister (MT). A final goal is to cover various classes of random number 

generators, providing strengths and weaknesses of each.  

Random Number Generation 

Background 

Random number generators (RNGs) are essential to many computing applications. For 

some problems algorithms employing random choices perform better than any known 

algorithm not using random choices
1
. It is often easier to find an algorithm to solve a 

given problem if randomness is allowed.  

 

Most random numbers used in computing are not considered truly random, but are 

created using Pseudo-Random Number Generators (PRNGs). PRNGs are deterministic 

algorithms, and are the only type of random number that can be algorithmically generated 

without an external source of entropy, such as thermal noise or user movements.  

 

Designing good RNGs is hard and best left to professionals. Like cryptography, the 

history of RNGs is littered with bad algorithms and the consequences of using them. A 

few historical mistakes are covered near the end of this article. 

Uses 

Random numbers are used in many applications
2
, including 

 

 AI algorithms like genetic algorithms and automated opponents. 

 Random game content and level generation.  

 Simulation of complex phenomena such as weather and fire. 

 Numerical methods such as Monte-Carlo integration. 

 Until recently primality proving used randomized algorithms.  

 Cryptography algorithms such as RSA use random numbers for key generation.  

 Weather simulation and other statistical physics testing. 
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 The class of problems efficiently solvable on a (Turing) machine equipped with a random number 

generator is BPP, and it is an open problem if BPP=P, P being the class of problems efficiently solvable on 

a computer without random choice. 
2
 Robert R. Coveyou of Oak Ridge National Laboratory humorously once titled an article, “The generation 

of random numbers is too important to be left to chance.” 

http://www.lomont.org/


 Optimization algorithms use random numbers significantly: simulated annealing, 

large space searching, and combinatorial searching. 

 

Hardware RNGs 

Since an algorithm cannot create “true” random numbers
3
, many hardware based RNGs 

have been devised. Quantum mechanical events cannot be predicted, and are considered a 

very good source of randomness. Such quantum phenomena include: 

 

 Nuclear decay detection, similar to a smoke detector. 

 Quantum mechanical noise source in electronic circuits called “shot noise”.  

 Photon streams through a partially silvered mirror. 

 Particle spins created from high energy x-rays. 

 

Other sources of physical randomness are  

 

 Atmospheric noise
4
. 

 Thermal noise in electronics. 

 

Other physical phenomena are often used on computers, like clock drift, mouse and 

keyboard input, network traffic, add-on hardware devices, or images gathered from 

moving scenery. Each source must be analyzed to determine how much entropy the 

source has, and then how many high-quality random bits can be extracted. 

 

Here are a few websites offering random bits and the method used to obtain them: 

 

 http://random.org/ - atmospheric noise. 

 http://www.fourmilab.ch/hotbits/  - radioactive decay of Cæsium-137. 

 http://www.lavarnd.org/  - noise in CCD image. 

Pseudo-random Number Generators (PRNGs) 

PRNGs generate a sequence of “random” numbers using an algorithm, operating on an 

internal state. The initial state is called the seed, and selecting a good seed for a given 

algorithm is often difficult. Often the internal state is also the returned value. Due to the 

state being finite, the PRNG will repeat at some point, and the period of a RNG is how 

many numbers it can return before repeating. A PRNG using n  bits for its state has a 

period of at most n2 . Starting a PRNG with the same seed allows repeatable random 

sequences, which is very useful for debugging among other things. When a PRNG needs 

a “random” seed, often sources of entropy from the system or external hardware are used 

to seed the PRNG. 
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 “Anyone who considers arithmetical methods of producing random numbers is, of course, in a state of 

sin.” - John von Neumann 
4
 See www.freewebs.com/pmutaf/iwrandom.html for a way to get random numbers from WiFi noise. 
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Due to computational needs, memory requirements, security needs, and desired random 

number “quality,” there are many different RNG algorithms. No one algorithm is suitable 

for all cases, in the same way that no sorting algorithm is best in all situations. Many 

people default to C/C++ rand() or the Mersenne Twister, both of which have their 

uses. Both are covered below. 

Common Distributions 

Most RNGs return an integer selected uniformly from the range  m,0  for some 

maximum value m . C/C++ implementations provide the rand() function, with m  

being #defined as RAND_MAX, quite often the 15 bit value 32767. srand(seed) 

sets the initial seed, often using the current time using srand(time(NULL)) as an 

entropy source. Most C/C++ rand() functions are Linear Congruential Generators, 

which are poor choices for cryptography. Most C/C++ implementations (as well as other 

languages) generate poor quality random numbers exhibiting various kinds of bias. 

 

The most common distribution used in games is a uniform distribution, where equally 

likely random integers are needed in a range  ba, . A common mistake is to use C code 

like (rand()%(b-a+1)) + a. The mistake is that not all values are equally likely to 

occur due to modulus wrapping around. This only works if 1ab  divides 

RAND_MAX+1. For example, if RAND_MAX is 32767, then trying to generate numbers in 

the range [0,32766] using this method causes 0 to be twice as likely as any other value. A 

valid (although slower) solution is to chop to a multiple of the range in  ba, , using: 

 
int z, c = RAND_MAX / (b-a+1); // must ensure these operations 

int c *= b-a+1;                // do not overflow! 

do 

   { 

   z = rand( ); 

   } while( z >= c); // require z uniformly in [0,b-a] 

return (z % (b-a+1)) + a; 

 

The second most commonly used distribution is a Gaussian Distribution, which can be 

generated from a uniform distribution. Let randf() return uniformly distributed real 

numbers in [0,1]. Then the polar form of the Box-Muller transformation gives two 

Gaussian values y1 and y2 per call. 

 
float x1, x2, w, y1, y2; 

do { 

   x1 = 2.0 * randf() - 1.0; 

   x2 = 2.0 * randf() - 1.0; 

   w  = x1 * x1 + x2 * x2; 

   } while ( w >= 1.0 ); 

w = sqrt( (-2.0 * log( w ) ) / w ); 

y1 = x1 * w; 

y2 = x2 * w; 

 

Boost [Boost07] documents techniques for generating other distributions starting with a 

uniform distribution. 



Randomness Testing 

To test if a sequence is “random,” a definition of “random” is needed. However 

“randomness” is very difficult to make precise. In practice (since many PRNGs are 

useful) tests have been designed to test the quality of RNGs by detecting sequence 

behavior that does not behave like a random sequence should. 

 

The most famous randomness-testing suite is DIEHARD [Marsaglia95], made of twelve 

tests
5
. DIEHARD has been expanded into the open source (GPL) set of tests DieHarder 

[Brown06], which includes the DIEHARD tests as well as adding many new ones. Also 

included are many RNGs and a harness to add new ones easily. A third testing framework 

is TestU01 [L’Ecuyer06]. Each framework provides some assurance a tested RNG is not 

clearly bad. 

Software Whitening 

Many sources of random bits have some bias or bit correlation, and methods to remove 

the bias and correlation are known as whitening algorithms. Some choices: 

 

 John von Neumann: Take bits two at a time, discard 00 and 11 cases, and output 1 

for 01 and 0 for 10, removing uniform bias, at the cost of needing more bits. 

 Flip every other bit, removing uniform bias. 

 XOR with another known good source of bits, such as Blum Blum Shub. 

 Apply cryptographic hashes like Whirlpool or RIPEMD-160. Note MD5 is no 

longer considered secure. 

 

These whitened streams should still not be considered a secure source of random bits 

without further processing. 

Non-cryptographic RNG Methods 
Non-cryptographically secure methods are usually faster than cryptographic methods, but 

should not be used when security is needed, hence the classification. Each of the 

following is a PRNG with output sequence nX . Some have a hidden internal state nS  

from which nX  is derived. Either 0X or 0S  is the seed, as appropriate. 

Middle Square Method 

This was suggested by John von Neumann in 1946: take a 10 digit number as a seed, 

square it, and return the middle 10 digits as the next number and seed. It was used in 

ENIAC, is a poor method with statistical weaknesses, and is no longer used. 

Linear Congruential Generator (LCG) 

These are the most common methods in widespread use, but are slowly being replaced by 

newer methods. They are computed with   mbaXX nn mod1  , for constants a  and b . 

The modulus m  is often chosen as a power of 2 making it efficiently implemented as a 
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bitmask. Careful choice of a and b is required to guarantee maximal period and avoid 

other problem cases. LCGs have various pathologies, one of which is that choosing 

points in 3-tuples and plotting them in space shows the points fall onto planes, as 

exhibited later in the section on RANDU, and is a result of linear relations between 

successive points. LCGs with power-of-two modulus m = 2
e
 are known to be badly 

behaved, especially in their least significant bits [L’Ecuyer90]. For example Numerical 

Recipes in C [Press06] recommends a = 1664525, b = 1013904223, m  = 2^32, and the 

lowest order bit then merely alternates. 

 

LCGs strengths are they are relatively fast and use a small state, making them useful in 

many places including embedded applications. If the modulus is not a power of two then 

the modulus operation is often expensive. 

 

Writing a LCG as as LCG( ),, bam , Table 1 shows some LCGs in use. 

 
LCG Use 

LCG(2^31, 65539, 0) the infamous RANDU covered below. 

LCG(2^24, 16598013, 12820163) Microsoft VisualBasic 6.0. 

LCG(2^48, 25214903917, 11) drand48 from the Unix standard library;  

was used in java.util.Random. 

LCG(10^12 − 11, 427419669081, 0) Used in Maple 9.5 and in MuPAD 3.  

Replaced by MT19937 (below) in Maple 10. 

Table 1 - Some LCGs in use 

Truncated Linear Congruential Generator (TLCG) 

These store an internal state iS  updated using a LCG, which in turn is used to generate 

the output iX . Symbolically,   mbaSS nn mod1  , 







 


K

S
FloorX n

n
1

1 . This allows 

using the fast m as a power of two but avoids the poor low order bits in the LCGs. If K is 

a power of 2, then the division is also fast. This algorithm is used extensively throughout 

Microsoft products (likely as a result of being compiled with VC++), including VC++ 

rand(), with the implementation 

 
/* MS algorithm for rand() */ 

static unsigned long seed; 

seed = 214013L * seed + 2531011L; 

return (seed>>16)&0x7FFF; // return bits 16-30 

 

This is not secure. In fact, for a cryptographic analysis project, this author has determined 

only three successive outputs from this algorithm are enough to determine the internal 

state (up to an unneeded most significant bit), and thereby know all future output. A 

simple way to compute the state is to notice the top bit of the state has no bearing on 

future output; so only 31 bits are unknown. The first output gives 15 bits of the state, 

leaving 17 bits unknown. Now, given two more outputs, take the first known 15 bits and 

test each of the possible 2^17 unknown bit states to see which gives the other two known 



outputs. This provably determines the internal state. Two outputs are not enough since 

they do not uniquely determine the state. 

 

Borland C++ and TurboC also used TLCGs with a =22695477 and b =1. Although the C 

specification does not force a rand implementation, the example one in the “C 

Programming Language” [Kernighan91] is a TLCG with a =113515245 and b =12345, 

with a RAND_MAX of the minimum allowable 32767. 

 

Linear Feedback Shift Register (LFSR) 

A Linear Feedback Shift Register (LFSR, Figure 1) generates bits from an internal state 

by shifting them out, one at a time. New bits are shifted into the state, and are a linear 

function of bits already in the state. LFSRs are popular because they are fast, easy to do 

in hardware, and can generate 

a wide range of sequences. 

Tap sequences can be chosen 

to make an n  bit LFSR have 

period 12 n . Given n2 bits 

of output the structure and 

feedback connections can be 

deduced, so they are 

definitely not secure. 

Inversive Congruential Generator 

These are similar to LCGs but are nonlinear, using   mbaXX nn mod1

1  

 , where 1

nX is 

the multiplicative inverse mmod , that is,  mXX nn mod11  . These are expensive to 

compute due to the inverse operation, and are not often used. 

Lagged Fibonacci Generator (LFG) 

LFGs use k words of state   mXXX knjnn mod  , kj 0  where  is some binary 

operation (plus, times, xor, others). These are very hard to get to work well and hard to 

initialize. The period depends on a starting seed and the space of reached values breaks 

into hard to predict cycles. They are now disfavored due to the Mersenne Twister and 

later generators. Boost [Boost07] includes variants of LFGs. 

Cellular Automata 

Mathematica prior to Version 6.0 uses the cellular automata Wolfram rule 30 to generate 

large integers
6
. Version 6.0 uses a variety of methods. 

Linear Recurrence Generators 

These are a generalization of the LFSRs, and most fast modern PRNGs are derived from 

these over binary finite fields. Note that none of these pass linear recurrence testing due 
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Figure 1 - LFSR 

http://mathworld.wolfram.com/Rule30.html


to being linear functions. The next few are special examples of this type of PRNG, and 

are considered the best general purpose RNGs. 

Mersenne Twister 

In 1997 Makoto Matsumoto and Takuji Nishimura published the Mersenne Twister 

algorithm [Matsumoto98], which avoided many of the problems with earlier generators. 

They presented two versions, MT11213 and MT19937, with periods of 2^11213-1 and 

2^19937-1 (approximately 10^6001), which represents far more computation than is 

likely possible in the lifetime of the entire universe. MT19937 uses an internal state of 

624 longs, or 19968 bits, which is about expected for the huge period. It is (perhaps 

surprisingly) faster than the LCGs, is equidistributed in up to 623 dimensions, and has 

become the main RNG used in statistical simulations. The speed comes from only 

updating a small part of the state for each random number generated, and moving through 

the state over multiple calls. 

 

Mersenne Twister is a Twisted Generalized Feedback Shift register (TGFSR). It is not 

cryptographically secure: observing 624 sequential outputs allows one to determine the 

internal state, and then predict the remaining sequence.  

 

Mersenne Twister has some flaws, covered in the WELL algorithm below. 

 

LFSR113, LFSR258 

[L’Ecuyer99] introduces combined LFSR Tausworthe generators LFSR113 and 

LFSR258 designed specially for 32-bit and 64-bit computers, respectively, with periods 

of approximately 2^113 and 2^258, respectively. They are fast, simple, and have a small 

memory footprint. For example, here is C/C++ code for LFSR113 that returns a 32-bit 

value: 

 
unsigned long z1, z2, z3, z4; /* the state  */ 

/* NOTE: the seed MUST satisfy  

      z1 > 1, z2 > 7, z3 > 15, and z4 > 127 */ 

unsigned long lfsr113(void)  

   { /* Generates random 32 bit numbers.    */  

   unsigned long b;  

   b  = (((z1 << 6) ^ z1)   >> 13);  

   z1 = (((z1 & 4294967294) << 18) ^ b);  

   b  = (((z2 << 2) ^ z2)   >> 27);  

   z2 = (((z2 & 4294967288) <<  2) ^ b);  

   b  = (((z3 << 13) ^ z3)  >> 21);  

   z3 = (((z3 & 4294967280) <<  7) ^ b);  

   b  = (((z4 << 3) ^ z4)   >> 12);  

   z4 = (((z4 & 4294967168) << 13) ^ b);  

   return (z1 ^ z2 ^ z3 ^ z4);  

   } 

Since 2^113 is approximately 10^34, this already represents a huge number of values, 

and has a much smaller footprint than MT19937. The LFSR generators also are well 

equidistributed, and avoid LCGs problems. 



WELL Algorithm 

Matsumoto (co-creator of the Mersenne Twister), L’Ecuyer (a major RNG researcher), 

and Panneton introduced another class of TGFSR PRNGs in 2006 [Panneton06]. These 

algorithms produce numbers with better equidistribution than MT19937 and improve 

upon “bit-mixing” properties. WELL stands for “Well Equidistributed Long-period 

Linear,” and they seem to be better choices for anywhere MT19937 is currently used. 

They are fast, come in many sizes, and produce higher quality random numbers. 

 

WELL period sizes are presented for period 2^n for n = 512, 521, 607, 800, 1024, 19937, 

21701, 23209, and 44497, with corresponding state sizes. This allows a user to trade 

period length for state size. All run at similar speed. 2^512 is about 10^154, and it is 

unlikely any video game will ever need that many random numbers, since it is far larger 

then the number of particles in the universe. The larger periods ones aren’t really needed 

except for computation like weather modeling or earth simulations. A standard PC needs 

over a googol
7
 of years to count to 2^512. 

 

A significant place the WELL PRNGs perform better than MT19937 is in escaping states 

with a large number of zeros. If MT19937 is seeded with many zeros, or somehow falls 

into such a state, then the generated numbers have heavy bias towards zeros for a many 

iterations. The WELL algorithms behave much better, escaping zero bias states quickly. 

 

The only downside is that they are slightly slower than MT19937, but not much. The 

upside is the numbers are considered to be higher quality, and the code is significantly 

simpler. Here is WELL512 C/C++ code written by the author and placed in the public 

domain
8
. It is about 40% faster than the code presented on L’Ecuyer’s site, and is about 

40% faster than MT19937 presented on Matsumoto’s site.  

 
/* initialize state to random bits  */ 

static unsigned long state[16]; 

/* init should also reset this to 0 */ 

static unsigned int index = 0; 

/* return 32 bit random number      */ 

unsigned long WELLRNG512(void) 

 { 

 unsigned long a, b, c, d; 

 a  = state[index]; 

 c  = state[(index+13)&15]; 

 b  = a^c^(a<<16)^(c<<15); 

 c  = state[(index+9)&15]; 

 c ^= (c>>11); 

 a  = state[index] = b^c;  

 d  = a^((a<<5)&0xDA442D24UL);  

 index = (index + 15)&15; 

 a  = state[index]; 

 state[index] = a^b^d^(a<<2)^(b<<18)^(c<<28); 

 return state[index]; 

 } 
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 Googol = 10^100. Google it. 
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 However, if you use it, I’d appreciate a reference or at least an email with thanks! 



Cryptographic RNG Methods 
Cryptographically Secure PRNGs (CSPRNGs) make it hard for an attacker to deduce the 

internal state of the generator or to predict future output given large amounts of output. 

Several CSPRNGs have been standardized and can be found online
9
. Two RFCs

10
 

dealing with randomness requirements for security are RFC1750 and RFC4086. Any 

implementation of these methods has to be done very carefully to avoid many pitfalls. 

Whenever possible use an implementation from a trusted and competent source.  

Blum Blum Shub 

Published in 1986 by Lenore Blum, Manuel Blum and Michael Shub, Blum Blum Shub 

[Blum86] is considered a secure PRNG. It is computed via   mSS nn mod2

1  where 

pqm  for two properly chosen large primes qp, . Then the output 1nX is some function 

on 1nS , which often is taken as bit parity or some particular bits of 1nS . Its strength 

relies on the hardness of integer factoring, which is the same problem RSA public key 

encryption relies on for security
11

. Blum Blum Shub is only useful for cryptography, 

since is it much slower than the non-cryptographic PRNGs. 

ISAAC, ISAAC+ 

[Jenkins96] introduced ISAAC, a CSPRNG based on a variant of the RC4 cipher. It is 

relatively fast for a CSPRNG, requiring an amortized 18.75 instructions to produce a 32-

bit value. There are no cycles in ISAAC shorter than 2
40

 values, and the expected cycle 

length is 2
8295

 values. ISAAC-64, a version for 64-bit machines, requires 19 instructions 

to produce a 64-bit result. 

/dev/random 

Although not a specific algorithm, Linux and many Unix flavors implement a source of 

randomness in /dev/random which returns random numbers based on system entropy, so 

it is considered a true random number generator. /dev/random blocks, that is, does not 

return until enough entropy has been gathered to satisfy the request. As a result, many 

programs use the non-blocking /dev/urandom. However these numbers are not as secure, 

and use of /dev/urandom depletes system entropy, allowing some attacks on bad 

implementations. The underlying algorithm is not specified; some systems use Yarrow as 

mentioned below. 

 

[Gutterman06] revealed exploitable weaknesses in the Linux implementation at the time, 

which should have been fixed by now. Overall /dev/random is the preferred place on 

Linux to get CSPRNGs. 
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 Note Shor’s quantum factoring algorithm factors integers efficiently, so once quantum computers are in 

use Blum Blum Shub will become insecure. 
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Microsoft’s CryptGenRandom  

Microsoft's CryptoAPI function CryptGenRandom function fills a buffer with 

cryptographically secure random bytes. Like /dev/random it is considered a true random 

number generator. Although closed source, it is FIPS validated, and is considered secure. 

This author is unaware of any weaknesses with recent implementations. On Windows, it 

is the preferred source of CSPRNGs. 

Yarrow 

[Kelsey99] introduces Yarrow, which uses system entropy to generate random numbers. 

It is explicitly unpatented and royalty-free, and no license is required to use it. Yarrow is 

used in Mac OS X and FreeBSD to implement /dev/random. Yarrow is no longer 

supported by the designers, who have released an improved design titled Fortuna. 

Fortuna 

Fortuna is another CSPRNG from the book Practical Cryptography [Ferguson03]. The 

generator is based on any good block cipher, and encrypts in counter mode, encrypting 

successive values of a counter. The key is changed periodically to prevent some statistical 

weaknesses. It uses entropy pools that gather information from random sources available 

to the system, and is considered a true RNG since it uses external entropy. 

Common Mistakes 

Knuth Example 

The history of RNGs is scattered with examples of bad design. Even algorithm master 

Donald Knuth tells a story in [Knuth98] about trying his hand at making a random 

number generator by creating a “Super-random” generator. His first run settled onto a 10-

digit number that then repeated forever. His second run began to repeat itself after 7401 

values with a cycle of 3178. So creation of good RNGs is not trivial. 

 



 
 

Here are a few more examples that hopefully will dissuade people from using homemade 

RNGs in critical applications.  

RANDU 

RANDU is an infamous LCG used since the 1960s; it is LGC(2^31,65539,0), and 

requires an odd initial seed. The constants were chosen for easy and fast implementation. 

As all LCGs, it suffers from linear relations between successive numbers. Figure 2 shows 

the output of 10,000 triplets  zyx ,,  plotted in 3D, which happen to fall into planes.  

Netscape  

An early version of Netscape needed a CSPRNG, but seeded it with three values that 

weren’t very well spread out (time of day, process ID, and parent process ID) and used 

the result for cryptography.  [Goldberg96] published a successful attack on Netscape’s 

SSL protocol, with the exploitable flaw being a poor choice of seed.  

Folklore Algorithms 

The author encountered a folklore algorithm from a game programmer around 1992, who 

explained that he had a fast and simple PRNG for his NES code. The basic idea was to 

shift bits out of a seed, and whenever the seed had 1 bit about to shift off, exclusive or in 

a constant. This was fast and looked nice in assembly, but being a skeptic this author 

thought about the claim of randomness, and said this should produce numbers that tend to 

decrease, and every so often jump back up, making saw tooth outputs. This led the 

original programmer to discover a bug in his AI that was using the PRNG which he 

Figure 2. LCG Bias 

 



hadn’t suspected (he had used it the PRNG for years). Although anecdotal, it is wise to 

test a new RNG and see that it behaves as expected before committing it to your toolbox. 

 

One last particularly funny example is the xkcd webcomic version of a random number 

generator at http://xkcd.com/c221.html, reproduced for your viewing pleasure: 

 
int getRandomNumber() 

 { 

 return 4; // chosen by fair dice roll. 

           // guaranteed to be random. 

      } 

 

Code 
There are many online places to obtain source code for the algorithms covered in this 

article. Boost [Boost07] contains high quality implementations for many of them, and 

Wikipedia contains more information and links to most of the presented topics. 

L’Ecuyer’s webpage (www.iro.umontreal.ca/~lecuyer/papers.html) is a good source of 

papers and many implementations. In addition, Technical Review 1 (TR1) for the C++ 

language includes many distributions and generators (including MT19337), so it is likely 

C++ will someday have some of these features built in. 

Conclusion 
This article has provided basics of RNGs, including many common algorithms. 

LFSR113, LSFR258, and the WELL generators offer better choices than the Mersenne 

Twister for many applications, and this presentation brings knowledge of them to a wider 

audience. Strengths and weaknesses were presented for algorithms where possible. 

Knowledge about RNG types and when to apply them should be in the toolkit of any 

serious developer, just as any serious developer should know multiple sorting algorithms, 

or numerous tree structures. Hopefully this article provides a base and reference for such 

knowledge. 

History 
2008 – Original Release. 

2011 – Fix to the WELL512 code: corrected 0xDA442D20 to 0xDA442D24. 

         – Fix to incorrect uniform [a,b] routine on page 3. 
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