
Random Number Generation
Chris Lomont, www.lomont.org

Introduction
This article is an introduction to random number generators (RNGs). The main goal is to

present a starting point for programmers needing to make decisions about RNG choice

and implementation. A second goal is to present better alternatives for the ubiquitous

Mersenne Twister (MT). A final goal is to cover various classes of random number

generators, providing strengths and weaknesses of each.

Random Number Generation

Background

Random number generators (RNGs) are essential to many computing applications. For

some problems algorithms employing random choices perform better than any known

algorithm not using random choices
1
. It is often easier to find an algorithm to solve a

given problem if randomness is allowed.

Most random numbers used in computing are not considered truly random, but are

created using Pseudo-Random Number Generators (PRNGs). PRNGs are deterministic

algorithms, and are the only type of random number that can be algorithmically generated

without an external source of entropy, such as thermal noise or user movements.

Designing good RNGs is hard and best left to professionals. Like cryptography, the

history of RNGs is littered with bad algorithms and the consequences of using them. A

few historical mistakes are covered near the end of this article.

Uses

Random numbers are used in many applications
2
, including

 AI algorithms like genetic algorithms and automated opponents.

 Random game content and level generation.

 Simulation of complex phenomena such as weather and fire.

 Numerical methods such as Monte-Carlo integration.

 Until recently primality proving used randomized algorithms.

 Cryptography algorithms such as RSA use random numbers for key generation.

 Weather simulation and other statistical physics testing.

1
 The class of problems efficiently solvable on a (Turing) machine equipped with a random number

generator is BPP, and it is an open problem if BPP=P, P being the class of problems efficiently solvable on

a computer without random choice.
2
 Robert R. Coveyou of Oak Ridge National Laboratory humorously once titled an article, “The generation

of random numbers is too important to be left to chance.”

http://www.lomont.org/

 Optimization algorithms use random numbers significantly: simulated annealing,

large space searching, and combinatorial searching.

Hardware RNGs

Since an algorithm cannot create “true” random numbers
3
, many hardware based RNGs

have been devised. Quantum mechanical events cannot be predicted, and are considered a

very good source of randomness. Such quantum phenomena include:

 Nuclear decay detection, similar to a smoke detector.

 Quantum mechanical noise source in electronic circuits called “shot noise”.

 Photon streams through a partially silvered mirror.

 Particle spins created from high energy x-rays.

Other sources of physical randomness are

 Atmospheric noise
4
.

 Thermal noise in electronics.

Other physical phenomena are often used on computers, like clock drift, mouse and

keyboard input, network traffic, add-on hardware devices, or images gathered from

moving scenery. Each source must be analyzed to determine how much entropy the

source has, and then how many high-quality random bits can be extracted.

Here are a few websites offering random bits and the method used to obtain them:

 http://random.org/ - atmospheric noise.

 http://www.fourmilab.ch/hotbits/ - radioactive decay of Cæsium-137.

 http://www.lavarnd.org/ - noise in CCD image.

Pseudo-random Number Generators (PRNGs)

PRNGs generate a sequence of “random” numbers using an algorithm, operating on an

internal state. The initial state is called the seed, and selecting a good seed for a given

algorithm is often difficult. Often the internal state is also the returned value. Due to the

state being finite, the PRNG will repeat at some point, and the period of a RNG is how

many numbers it can return before repeating. A PRNG using n bits for its state has a

period of at most n2 . Starting a PRNG with the same seed allows repeatable random

sequences, which is very useful for debugging among other things. When a PRNG needs

a “random” seed, often sources of entropy from the system or external hardware are used

to seed the PRNG.

3
 “Anyone who considers arithmetical methods of producing random numbers is, of course, in a state of

sin.” - John von Neumann
4
 See www.freewebs.com/pmutaf/iwrandom.html for a way to get random numbers from WiFi noise.

http://random.org/
http://www.fourmilab.ch/hotbits/
http://www.lavarnd.org/
http://www.freewebs.com/pmutaf/iwrandom.html

Due to computational needs, memory requirements, security needs, and desired random

number “quality,” there are many different RNG algorithms. No one algorithm is suitable

for all cases, in the same way that no sorting algorithm is best in all situations. Many

people default to C/C++ rand() or the Mersenne Twister, both of which have their

uses. Both are covered below.

Common Distributions

Most RNGs return an integer selected uniformly from the range  m,0 for some

maximum value m . C/C++ implementations provide the rand() function, with m

being #defined as RAND_MAX, quite often the 15 bit value 32767. srand(seed)

sets the initial seed, often using the current time using srand(time(NULL)) as an

entropy source. Most C/C++ rand() functions are Linear Congruential Generators,

which are poor choices for cryptography. Most C/C++ implementations (as well as other

languages) generate poor quality random numbers exhibiting various kinds of bias.

The most common distribution used in games is a uniform distribution, where equally

likely random integers are needed in a range  ba, . A common mistake is to use C code

like (rand()%(b-a+1)) + a. The mistake is that not all values are equally likely to

occur due to modulus wrapping around. This only works if 1ab divides

RAND_MAX+1. For example, if RAND_MAX is 32767, then trying to generate numbers in

the range [0,32766] using this method causes 0 to be twice as likely as any other value. A

valid (although slower) solution is to chop to a multiple of the range in  ba, , using:

int z, c = RAND_MAX / (b-a+1); // must ensure these operations

int c *= b-a+1; // do not overflow!

do

 {

 z = rand();

 } while(z >= c); // require z uniformly in [0,b-a]

return (z % (b-a+1)) + a;

The second most commonly used distribution is a Gaussian Distribution, which can be

generated from a uniform distribution. Let randf() return uniformly distributed real

numbers in [0,1]. Then the polar form of the Box-Muller transformation gives two

Gaussian values y1 and y2 per call.

float x1, x2, w, y1, y2;

do {

 x1 = 2.0 * randf() - 1.0;

 x2 = 2.0 * randf() - 1.0;

 w = x1 * x1 + x2 * x2;

 } while (w >= 1.0);

w = sqrt((-2.0 * log(w)) / w);

y1 = x1 * w;

y2 = x2 * w;

Boost [Boost07] documents techniques for generating other distributions starting with a

uniform distribution.

Randomness Testing

To test if a sequence is “random,” a definition of “random” is needed. However

“randomness” is very difficult to make precise. In practice (since many PRNGs are

useful) tests have been designed to test the quality of RNGs by detecting sequence

behavior that does not behave like a random sequence should.

The most famous randomness-testing suite is DIEHARD [Marsaglia95], made of twelve

tests
5
. DIEHARD has been expanded into the open source (GPL) set of tests DieHarder

[Brown06], which includes the DIEHARD tests as well as adding many new ones. Also

included are many RNGs and a harness to add new ones easily. A third testing framework

is TestU01 [L’Ecuyer06]. Each framework provides some assurance a tested RNG is not

clearly bad.

Software Whitening

Many sources of random bits have some bias or bit correlation, and methods to remove

the bias and correlation are known as whitening algorithms. Some choices:

 John von Neumann: Take bits two at a time, discard 00 and 11 cases, and output 1

for 01 and 0 for 10, removing uniform bias, at the cost of needing more bits.

 Flip every other bit, removing uniform bias.

 XOR with another known good source of bits, such as Blum Blum Shub.

 Apply cryptographic hashes like Whirlpool or RIPEMD-160. Note MD5 is no

longer considered secure.

These whitened streams should still not be considered a secure source of random bits

without further processing.

Non-cryptographic RNG Methods
Non-cryptographically secure methods are usually faster than cryptographic methods, but

should not be used when security is needed, hence the classification. Each of the

following is a PRNG with output sequence nX . Some have a hidden internal state nS

from which nX is derived. Either 0X or 0S is the seed, as appropriate.

Middle Square Method

This was suggested by John von Neumann in 1946: take a 10 digit number as a seed,

square it, and return the middle 10 digits as the next number and seed. It was used in

ENIAC, is a poor method with statistical weaknesses, and is no longer used.

Linear Congruential Generator (LCG)

These are the most common methods in widespread use, but are slowly being replaced by

newer methods. They are computed with   mbaXX nn mod1  , for constants a and b .

The modulus m is often chosen as a power of 2 making it efficiently implemented as a

5
 http://en.wikipedia.org/wiki/Diehard_tests

http://en.wikipedia.org/wiki/Diehard_tests

bitmask. Careful choice of a and b is required to guarantee maximal period and avoid

other problem cases. LCGs have various pathologies, one of which is that choosing

points in 3-tuples and plotting them in space shows the points fall onto planes, as

exhibited later in the section on RANDU, and is a result of linear relations between

successive points. LCGs with power-of-two modulus m = 2
e
 are known to be badly

behaved, especially in their least significant bits [L’Ecuyer90]. For example Numerical

Recipes in C [Press06] recommends a = 1664525, b = 1013904223, m = 2^32, and the

lowest order bit then merely alternates.

LCGs strengths are they are relatively fast and use a small state, making them useful in

many places including embedded applications. If the modulus is not a power of two then

the modulus operation is often expensive.

Writing a LCG as as LCG(),, bam , Table 1 shows some LCGs in use.

LCG Use

LCG(2^31, 65539, 0) the infamous RANDU covered below.

LCG(2^24, 16598013, 12820163) Microsoft VisualBasic 6.0.

LCG(2^48, 25214903917, 11) drand48 from the Unix standard library;

was used in java.util.Random.

LCG(10^12 − 11, 427419669081, 0) Used in Maple 9.5 and in MuPAD 3.

Replaced by MT19937 (below) in Maple 10.

Table 1 - Some LCGs in use

Truncated Linear Congruential Generator (TLCG)

These store an internal state iS updated using a LCG, which in turn is used to generate

the output iX . Symbolically,   mbaSS nn mod1  , 







 


K

S
FloorX n

n
1

1 . This allows

using the fast m as a power of two but avoids the poor low order bits in the LCGs. If K is

a power of 2, then the division is also fast. This algorithm is used extensively throughout

Microsoft products (likely as a result of being compiled with VC++), including VC++

rand(), with the implementation

/* MS algorithm for rand() */

static unsigned long seed;

seed = 214013L * seed + 2531011L;

return (seed>>16)&0x7FFF; // return bits 16-30

This is not secure. In fact, for a cryptographic analysis project, this author has determined

only three successive outputs from this algorithm are enough to determine the internal

state (up to an unneeded most significant bit), and thereby know all future output. A

simple way to compute the state is to notice the top bit of the state has no bearing on

future output; so only 31 bits are unknown. The first output gives 15 bits of the state,

leaving 17 bits unknown. Now, given two more outputs, take the first known 15 bits and

test each of the possible 2^17 unknown bit states to see which gives the other two known

outputs. This provably determines the internal state. Two outputs are not enough since

they do not uniquely determine the state.

Borland C++ and TurboC also used TLCGs with a =22695477 and b =1. Although the C

specification does not force a rand implementation, the example one in the “C

Programming Language” [Kernighan91] is a TLCG with a =113515245 and b =12345,

with a RAND_MAX of the minimum allowable 32767.

Linear Feedback Shift Register (LFSR)

A Linear Feedback Shift Register (LFSR, Figure 1) generates bits from an internal state

by shifting them out, one at a time. New bits are shifted into the state, and are a linear

function of bits already in the state. LFSRs are popular because they are fast, easy to do

in hardware, and can generate

a wide range of sequences.

Tap sequences can be chosen

to make an n bit LFSR have

period 12 n . Given n2 bits

of output the structure and

feedback connections can be

deduced, so they are

definitely not secure.

Inversive Congruential Generator

These are similar to LCGs but are nonlinear, using   mbaXX nn mod1

1  

 , where 1

nX is

the multiplicative inverse mmod , that is,  mXX nn mod11  . These are expensive to

compute due to the inverse operation, and are not often used.

Lagged Fibonacci Generator (LFG)

LFGs use k words of state   mXXX knjnn mod  , kj 0 where  is some binary

operation (plus, times, xor, others). These are very hard to get to work well and hard to

initialize. The period depends on a starting seed and the space of reached values breaks

into hard to predict cycles. They are now disfavored due to the Mersenne Twister and

later generators. Boost [Boost07] includes variants of LFGs.

Cellular Automata

Mathematica prior to Version 6.0 uses the cellular automata Wolfram rule 30 to generate

large integers
6
. Version 6.0 uses a variety of methods.

Linear Recurrence Generators

These are a generalization of the LFSRs, and most fast modern PRNGs are derived from

these over binary finite fields. Note that none of these pass linear recurrence testing due

6
 http://mathworld.wolfram.com/Rule30.html

Figure 1 - LFSR

http://mathworld.wolfram.com/Rule30.html

to being linear functions. The next few are special examples of this type of PRNG, and

are considered the best general purpose RNGs.

Mersenne Twister

In 1997 Makoto Matsumoto and Takuji Nishimura published the Mersenne Twister

algorithm [Matsumoto98], which avoided many of the problems with earlier generators.

They presented two versions, MT11213 and MT19937, with periods of 2^11213-1 and

2^19937-1 (approximately 10^6001), which represents far more computation than is

likely possible in the lifetime of the entire universe. MT19937 uses an internal state of

624 longs, or 19968 bits, which is about expected for the huge period. It is (perhaps

surprisingly) faster than the LCGs, is equidistributed in up to 623 dimensions, and has

become the main RNG used in statistical simulations. The speed comes from only

updating a small part of the state for each random number generated, and moving through

the state over multiple calls.

Mersenne Twister is a Twisted Generalized Feedback Shift register (TGFSR). It is not

cryptographically secure: observing 624 sequential outputs allows one to determine the

internal state, and then predict the remaining sequence.

Mersenne Twister has some flaws, covered in the WELL algorithm below.

LFSR113, LFSR258

[L’Ecuyer99] introduces combined LFSR Tausworthe generators LFSR113 and

LFSR258 designed specially for 32-bit and 64-bit computers, respectively, with periods

of approximately 2^113 and 2^258, respectively. They are fast, simple, and have a small

memory footprint. For example, here is C/C++ code for LFSR113 that returns a 32-bit

value:

unsigned long z1, z2, z3, z4; /* the state */

/* NOTE: the seed MUST satisfy

 z1 > 1, z2 > 7, z3 > 15, and z4 > 127 */

unsigned long lfsr113(void)

 { /* Generates random 32 bit numbers. */

 unsigned long b;

 b = (((z1 << 6) ^ z1) >> 13);

 z1 = (((z1 & 4294967294) << 18) ^ b);

 b = (((z2 << 2) ^ z2) >> 27);

 z2 = (((z2 & 4294967288) << 2) ^ b);

 b = (((z3 << 13) ^ z3) >> 21);

 z3 = (((z3 & 4294967280) << 7) ^ b);

 b = (((z4 << 3) ^ z4) >> 12);

 z4 = (((z4 & 4294967168) << 13) ^ b);

 return (z1 ^ z2 ^ z3 ^ z4);

 }

Since 2^113 is approximately 10^34, this already represents a huge number of values,

and has a much smaller footprint than MT19937. The LFSR generators also are well

equidistributed, and avoid LCGs problems.

WELL Algorithm

Matsumoto (co-creator of the Mersenne Twister), L’Ecuyer (a major RNG researcher),

and Panneton introduced another class of TGFSR PRNGs in 2006 [Panneton06]. These

algorithms produce numbers with better equidistribution than MT19937 and improve

upon “bit-mixing” properties. WELL stands for “Well Equidistributed Long-period

Linear,” and they seem to be better choices for anywhere MT19937 is currently used.

They are fast, come in many sizes, and produce higher quality random numbers.

WELL period sizes are presented for period 2^n for n = 512, 521, 607, 800, 1024, 19937,

21701, 23209, and 44497, with corresponding state sizes. This allows a user to trade

period length for state size. All run at similar speed. 2^512 is about 10^154, and it is

unlikely any video game will ever need that many random numbers, since it is far larger

then the number of particles in the universe. The larger periods ones aren’t really needed

except for computation like weather modeling or earth simulations. A standard PC needs

over a googol
7
 of years to count to 2^512.

A significant place the WELL PRNGs perform better than MT19937 is in escaping states

with a large number of zeros. If MT19937 is seeded with many zeros, or somehow falls

into such a state, then the generated numbers have heavy bias towards zeros for a many

iterations. The WELL algorithms behave much better, escaping zero bias states quickly.

The only downside is that they are slightly slower than MT19937, but not much. The

upside is the numbers are considered to be higher quality, and the code is significantly

simpler. Here is WELL512 C/C++ code written by the author and placed in the public

domain
8
. It is about 40% faster than the code presented on L’Ecuyer’s site, and is about

40% faster than MT19937 presented on Matsumoto’s site.

/* initialize state to random bits */

static unsigned long state[16];

/* init should also reset this to 0 */

static unsigned int index = 0;

/* return 32 bit random number */

unsigned long WELLRNG512(void)

 {

 unsigned long a, b, c, d;

 a = state[index];

 c = state[(index+13)&15];

 b = a^c^(a<<16)^(c<<15);

 c = state[(index+9)&15];

 c ^= (c>>11);

 a = state[index] = b^c;

 d = a^((a<<5)&0xDA442D24UL);

 index = (index + 15)&15;

 a = state[index];

 state[index] = a^b^d^(a<<2)^(b<<18)^(c<<28);

 return state[index];

 }

7
 Googol = 10^100. Google it.

8
 However, if you use it, I’d appreciate a reference or at least an email with thanks!

Cryptographic RNG Methods
Cryptographically Secure PRNGs (CSPRNGs) make it hard for an attacker to deduce the

internal state of the generator or to predict future output given large amounts of output.

Several CSPRNGs have been standardized and can be found online
9
. Two RFCs

10

dealing with randomness requirements for security are RFC1750 and RFC4086. Any

implementation of these methods has to be done very carefully to avoid many pitfalls.

Whenever possible use an implementation from a trusted and competent source.

Blum Blum Shub

Published in 1986 by Lenore Blum, Manuel Blum and Michael Shub, Blum Blum Shub

[Blum86] is considered a secure PRNG. It is computed via   mSS nn mod2

1  where

pqm  for two properly chosen large primes qp, . Then the output 1nX is some function

on 1nS , which often is taken as bit parity or some particular bits of 1nS . Its strength

relies on the hardness of integer factoring, which is the same problem RSA public key

encryption relies on for security
11

. Blum Blum Shub is only useful for cryptography,

since is it much slower than the non-cryptographic PRNGs.

ISAAC, ISAAC+

[Jenkins96] introduced ISAAC, a CSPRNG based on a variant of the RC4 cipher. It is

relatively fast for a CSPRNG, requiring an amortized 18.75 instructions to produce a 32-

bit value. There are no cycles in ISAAC shorter than 2
40

 values, and the expected cycle

length is 2
8295

 values. ISAAC-64, a version for 64-bit machines, requires 19 instructions

to produce a 64-bit result.

/dev/random

Although not a specific algorithm, Linux and many Unix flavors implement a source of

randomness in /dev/random which returns random numbers based on system entropy, so

it is considered a true random number generator. /dev/random blocks, that is, does not

return until enough entropy has been gathered to satisfy the request. As a result, many

programs use the non-blocking /dev/urandom. However these numbers are not as secure,

and use of /dev/urandom depletes system entropy, allowing some attacks on bad

implementations. The underlying algorithm is not specified; some systems use Yarrow as

mentioned below.

[Gutterman06] revealed exploitable weaknesses in the Linux implementation at the time,

which should have been fixed by now. Overall /dev/random is the preferred place on

Linux to get CSPRNGs.

9
 http://en.wikipedia.org/wiki/CSPRNG

10
 www.ietf.org/rfc

11
 Note Shor’s quantum factoring algorithm factors integers efficiently, so once quantum computers are in

use Blum Blum Shub will become insecure.

http://en.wikipedia.org/wiki/CSPRNG
http://www.ietf.org/rfc

Microsoft’s CryptGenRandom

Microsoft's CryptoAPI function CryptGenRandom function fills a buffer with

cryptographically secure random bytes. Like /dev/random it is considered a true random

number generator. Although closed source, it is FIPS validated, and is considered secure.

This author is unaware of any weaknesses with recent implementations. On Windows, it

is the preferred source of CSPRNGs.

Yarrow

[Kelsey99] introduces Yarrow, which uses system entropy to generate random numbers.

It is explicitly unpatented and royalty-free, and no license is required to use it. Yarrow is

used in Mac OS X and FreeBSD to implement /dev/random. Yarrow is no longer

supported by the designers, who have released an improved design titled Fortuna.

Fortuna

Fortuna is another CSPRNG from the book Practical Cryptography [Ferguson03]. The

generator is based on any good block cipher, and encrypts in counter mode, encrypting

successive values of a counter. The key is changed periodically to prevent some statistical

weaknesses. It uses entropy pools that gather information from random sources available

to the system, and is considered a true RNG since it uses external entropy.

Common Mistakes

Knuth Example

The history of RNGs is scattered with examples of bad design. Even algorithm master

Donald Knuth tells a story in [Knuth98] about trying his hand at making a random

number generator by creating a “Super-random” generator. His first run settled onto a 10-

digit number that then repeated forever. His second run began to repeat itself after 7401

values with a cycle of 3178. So creation of good RNGs is not trivial.

Here are a few more examples that hopefully will dissuade people from using homemade

RNGs in critical applications.

RANDU

RANDU is an infamous LCG used since the 1960s; it is LGC(2^31,65539,0), and

requires an odd initial seed. The constants were chosen for easy and fast implementation.

As all LCGs, it suffers from linear relations between successive numbers. Figure 2 shows

the output of 10,000 triplets  zyx ,, plotted in 3D, which happen to fall into planes.

Netscape

An early version of Netscape needed a CSPRNG, but seeded it with three values that

weren’t very well spread out (time of day, process ID, and parent process ID) and used

the result for cryptography. [Goldberg96] published a successful attack on Netscape’s

SSL protocol, with the exploitable flaw being a poor choice of seed.

Folklore Algorithms

The author encountered a folklore algorithm from a game programmer around 1992, who

explained that he had a fast and simple PRNG for his NES code. The basic idea was to

shift bits out of a seed, and whenever the seed had 1 bit about to shift off, exclusive or in

a constant. This was fast and looked nice in assembly, but being a skeptic this author

thought about the claim of randomness, and said this should produce numbers that tend to

decrease, and every so often jump back up, making saw tooth outputs. This led the

original programmer to discover a bug in his AI that was using the PRNG which he

Figure 2. LCG Bias

hadn’t suspected (he had used it the PRNG for years). Although anecdotal, it is wise to

test a new RNG and see that it behaves as expected before committing it to your toolbox.

One last particularly funny example is the xkcd webcomic version of a random number

generator at http://xkcd.com/c221.html, reproduced for your viewing pleasure:

int getRandomNumber()

 {

 return 4; // chosen by fair dice roll.

 // guaranteed to be random.

 }

Code
There are many online places to obtain source code for the algorithms covered in this

article. Boost [Boost07] contains high quality implementations for many of them, and

Wikipedia contains more information and links to most of the presented topics.

L’Ecuyer’s webpage (www.iro.umontreal.ca/~lecuyer/papers.html) is a good source of

papers and many implementations. In addition, Technical Review 1 (TR1) for the C++

language includes many distributions and generators (including MT19337), so it is likely

C++ will someday have some of these features built in.

Conclusion
This article has provided basics of RNGs, including many common algorithms.

LFSR113, LSFR258, and the WELL generators offer better choices than the Mersenne

Twister for many applications, and this presentation brings knowledge of them to a wider

audience. Strengths and weaknesses were presented for algorithms where possible.

Knowledge about RNG types and when to apply them should be in the toolkit of any

serious developer, just as any serious developer should know multiple sorting algorithms,

or numerous tree structures. Hopefully this article provides a base and reference for such

knowledge.

History
2008 – Original Release.

2011 – Fix to the WELL512 code: corrected 0xDA442D20 to 0xDA442D24.

 – Fix to incorrect uniform [a,b] routine on page 3.

References
[Blum86] Blum, Lenore, Manuel Blum, and Michael Shub. “A Simple Unpredictable

Pseudo-Random Number Generator”, SIAM Journal on Computing, volume 15, pp. 364–

383, May 1986.

[Brown06] Brown, Robert G., and Dirk Eddelbuettel , “DieHarder: A Random Number

Test Suite Version 2.24.4”, www.phy.duke.edu/~rgb/General/rand_rate.php

[Boost07] “The Boost C++ Library,” 2007, www.boost.org.

http://xkcd.com/c221.html
http://www.iro.umontreal.ca/~lecuyer/papers.html
http://www.phy.duke.edu/~rgb/General/rand_rate.php
http://www.boost.org/

[Ferguson03] Ferguson, Niels, and Bruce Schneier, Practical Cryptography, Wiley,

2003. ISBN 0-471-22357-3.

[Goldberg96] Goldberg, Ian, and David Wagner, “Randomness and the Netscape

Browser,” Dr. Dobb's Journal, January 1996, pp. 66-70.

www.cs.berkeley.edu/~daw/papers/ddj-netscape.html

[Gutterman06] Gutterman, Pinkas, and Reinman, “Open to Attack: Vulnerabilities of the

Linux Random Number Generator,” March 2006, Black Hat 2006,

www.pinkas.net/PAPERS/gpr06.pdf.

[Jenkins96] Jenkins, Bob, “ISAAC and RC4,” www.burtleburtle.net/bob/rand/isaac.html

as of 2007.

[Kelsey99] Kelsey, J., B. Schneier, and N. Ferguson “Yarrow-160: Notes on the Design

and Analysis of the Yarrow Cryptographic Pseudorandom Number Generator,” Sixth

Annual Workshop on Selected Areas in Cryptography, Springer Verlag, August 1999,

www.schneier.com/paper-yarrow.html.

[Kernighan91] Kernighan, B., and Dennis Ritchie, The C Programming Language,

Second Edition, Prentice-Hall, 1991.

[Knuth98] Knuth, Donald, The Art of Computer Programming, Volume 2: Seminumerical

Algorithms, Third Edition, Addison-Wesley, 1998.

[L’Ecuyer90] L'Ecuyer, P., “Random Numbers for Simulation”, Communications of the

ACM, 33 (1990), pp. 85-98, www.iro.umontreal.ca/~lecuyer/papers.html.

[L'Ecuyer99] L'Ecuyer, P., “Tables of Maximally-Equidistributed Combined LFSR

Generators”, Mathematics of Computation, 68, 225 (1999), 261-269.

www.iro.umontreal.ca/~lecuyer/papers.html.

[L’Ecuyer06] L'Ecuyer, P. and R. Simard, “TestU01: A C Library for Empirical Testing

of Random Number Generators”, May 2006, Revised November 2006, ACM

Transactions on Mathematical Software, 33, 4, Article 1, December 2007, to appear.

www.iro.umontreal.ca/~lecuyer/papers.html

[Marsaglia95] Marsaglia, George. DIEHARD, http://www.csis.hku.hk/~diehard/

[Matsumoto98] Matsumoto, M., and T. Nishimura, “Mersenne twister: a 623-

dimensionally equidistributed uniform pseudorandom number generator”, ACM Trans.

Model. Comput. Simul. 8, 3 (1998). www.math.sci.hiroshima-u.ac.jp/~m-

mat/MT/emt.html.

[Panneton06] Panneton, F. P. L'Ecuyer, and M. Matsumoto, “Improved Long-Period

Generators Based on Linear Recurrences Modulo 2”, ACM Transactions on

Mathematical Software, 32, 1 (2006), 1-16. www.iro.umontreal.ca/~lecuyer/papers.html

[Press06] Press, William H. (Editor), Saul A. Teukolsky, William T. Vetterling, Brian P.

Flannery, Numerical Recipes in C++: The Art of Scientific Computing, Cambridge

University Press; 2 edition, 2002.

http://www.cs.berkeley.edu/~daw/papers/ddj-netscape.html
http://www.pinkas.net/PAPERS/gpr06.pdf
http://www.burtleburtle.net/bob/rand/isaac.html
http://www.schneier.com/paper-yarrow.html
http://www.iro.umontreal.ca/~lecuyer/papers.html
http://www.iro.umontreal.ca/~lecuyer/papers.html
http://www.iro.umontreal.ca/~lecuyer/papers.html
http://www.csis.hku.hk/~diehard/
http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html
http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html
http://www.iro.umontreal.ca/~lecuyer/papers.html

	Random Number Generation
	Introduction
	Random Number Generation
	Background
	Uses
	Hardware RNGs
	Pseudo-random Number Generators (PRNGs)
	Common Distributions
	Randomness Testing
	Software Whitening

	Non-cryptographic RNG Methods
	Middle Square Method
	Linear Congruential Generator (LCG)
	Truncated Linear Congruential Generator (TLCG)
	Linear Feedback Shift Register (LFSR)
	Inversive Congruential Generator
	Lagged Fibonacci Generator (LFG)
	Cellular Automata
	Linear Recurrence Generators
	Mersenne Twister
	LFSR113, LFSR258
	WELL Algorithm

	Cryptographic RNG Methods
	Blum Blum Shub
	ISAAC, ISAAC+
	/dev/random
	Microsoft’s CryptGenRandom
	Yarrow
	Fortuna

	Common Mistakes
	Knuth Example
	RANDU
	Netscape
	Folklore Algorithms

	Code
	Conclusion
	History
	References

