
Introduction to Intel® Advanced Vector Extensions

By Chris Lomont

Intel® Advanced Vector Extensions (AVX) is a set of instructions for doing Single Instruction
Multiple Data (SIMD) operations on Intel® architecture CPUs. These instructions extend previous
SIMD offerings (under the acronyms MMX and SSE) by adding the following new features:

Ç The 128-bit SIMD registers have been expanded to 256 bits. Intel® AVX is designed to
support 512 or 1024 bits in the future.

Ç Three-operand, nondestructive operations have been added. Previous two-operand
instructions performed operations such as A = A + B, which overwrites a source operand;
the new operands can perform operations like A = B + C, leaving the original source
operands unchanged.

Ç A few instructions take four-register operands, allowing smaller and faster code by
removing unnecessary instructions.

Ç Memory alignment requirements for operands are relaxed.

Ç A new extension coding scheme (VEX) has been designed to make future additions easier
as well as making coding of instructions smaller and faster to execute.

Closely related to these advances are the new Fused–Multiply–Add (FMA) instructions, which
allow faster and more accurate specialized operations such as single instruction A = A * B + C. The
FMA instructions should be available in the second-generation Intel® Core™ CPU. Other features
include new instructions for dealing with Advanced Encryption Standard (AES) encryption and
decryption, a packed carry-less multiplication operation (PCLMULQDQ) useful for certain
encryption primitives, and some reserved slots for future instructions, such as a hardware random
number generator.

Instruction Set Overview

The new instructions are encoded using what Intel calls a VEX prefix, which is a two- or three-byte
prefix designed to clean up the complexity of current and future x86/x64 instruction encoding.
The two new VEX prefixes are formed from two obsolete 32-bit instructions—Load Pointer Using
DS (LDS—0xC4, 3-byte form) and Load Pointer Using ES (LES—0xC5, two-byte form)—which load
the DS and ES segment registers in 32-bit mode. In 64-bit mode, opcodes LDS and LES generate an
invalid-opcode exception, but under Intel® AVX, these opcodes are repurposed for encoding new
instruction prefixes. As a result, the VEX instructions can only be used when running in 64-bit
mode. The prefixes allow encoding more registers than previous x86 instructions and are required
for accessing the new 256-bit SIMD registers or using the three- and four-operand syntax. As a
user, you do not need to worry about this (unless you’re writing assemblers or disassemblers).

2 Intel® Advanced Vector Extensions

v1b DRAFT 23 May 2011

Note The rest of this article assumes operation in 64-bit mode.

SIMD instructions allow processing of multiple pieces of data in a single step, speeding up
throughput for many tasks, from video encoding and decoding to image processing to data
analysis to physics simulations. Intel® AVX instructions work on Institute of Electrical and
Electronics Engineers (IEEE)-754 floating-point values in 32-bit length (called single precision)
and in 64-bit length (called double precision). IEEE-754 is the standard defining reproducible,
robust floating-point operation and is the standard for most mainstream numerical computations.

The older, related SSE instructions also support various signed and unsigned integer sizes,
including signed and unsigned byte (B, 8-bit), word (W, 16-bit), doubleword (DW, 32-bit),
quadword (QW, 64-bit), and doublequadword (DQ, 128-bit) lengths. Not all instructions are
available in all size combinations; for details, see the links provided in “For More Information.” See
Figure 2 later in this article for a graphical representation of the data types.

The hardware supporting Intel® AVX (and FMA) consists of the 16 256-bit YMM registers YMM0-
YMM15 and a 32-bit control/status register called MXCSR. The YMM registers are aliased over the
older 128-bit XMM registers used for SSE, treating the XMM registers as the lower half of the
corresponding YMM register, as shown in Figure 1.

Bits 0–5 of MXCSR indicate SIMD floating-point exceptions with “sticky” bits—after being set, they
remain set until cleared using LDMXCSR or FXRSTOR. Bits 7–12 mask individual exceptions when set,
initially set by a power-up or reset. Bits 0–5 represent invalid operation, denormal, divide by zero,
overflow, underflow, and precision, respectively. For details, see the links ”For More Information.”

Figure 1. XMM registers overlay the YMM registers.

Intel® Advanced Vector Extensions 3

 v1b DRAFT 23 May 2011

Figure 2 illustrates the data types used in the SSE and Intel® AVX instructions. Roughly, for Intel®
AVX, any multiple of 32-bit or 64-bit floating-point type that adds to 128 or 256 bits is allowed as
well as multiples of any integer type that adds to 128 bits.

Figure 2. Intel® AVX and SSE data types

Instructions often come in scalar and vector versions, as illustrated in Figure 3. Vector versions
operate by treating data in the registers in parallel “SIMD” mode; the scalar version only operates
on one entry in each register. This distinction allows less data movement for some algorithms,
providing better overall throughput.

Figure 3. SIMD versus scalar operations

4 Intel® Advanced Vector Extensions

v1b DRAFT 23 May 2011

Data is memory aligned when the data to be operated upon as an n-byte chunk is stored on an n-
byte memory boundary. For example, when loading 256-bit data into YMM registers, if the data
source is 256-bit aligned, the data is called aligned.

For SSE operations, memory alignment was required unless explicitly stated. For example, under
SSE, there were specific instructions for memory-aligned and memory-unaligned operations, such
as the MOVAPD (move-aligned packed double) and MOVUPD (move-unaligned packed double)
instructions. Instructions not split in two like this required aligned accesses.

Intel® AVX has relaxed some memory alignment requirements, so now Intel® AVX by default
allows unaligned access; however, this access may come at a performance slowdown, so the old
rule of designing your data to be memory aligned is still good practice (16-byte aligned for 128-bit
access and 32-byte aligned for 256-bit access). The main exceptions are the VEX-extended
versions of the SSE instructions that explicitly required memory-aligned data: These instructions
still require aligned data. Other specific instructions requiring aligned access are listed in
Table 2.4 of the Intel® Advanced Vector Extensions Programming Reference (see “For More
Information” for a link).

Another performance concern besides unaligned data issues is that mixing legacy XMM-only
instructions and newer Intel® AVX instructions causes delays, so minimize transitions between
VEX-encoded instructions and legacy SSE code. Said another way, do not mix VEX-prefixed
instructions and non–VEX-prefixed instructions for optimal throughput. If you must do so,
minimize transitions between the two by grouping instructions of the same VEX/non-VEX class.
Alternatively, there is no transition penalty if the upper YMM bits are set to zero via VZEROUPPER or
VZEROALL, which compilers should automatically insert. This insertion requires an extra
instruction, so profiling is recommended.

Intel® AVX Instruction Classes

As mentioned, Intel® AVX adds support for many new instructions and extends current SSE
instructions to the new 256-bit registers, with most old SSE instructions having a V-prefixed
Intel® AVX version for accessing new register sizes and three-operand forms. Depending on how
instructions are counted, there are up to a few hundred new Intel® AVX instructions.

For example, the old two-operand SSE instruction ADDPS xmm1, xmm2/m128 can now be expressed
in three-operand syntax as VADDPS xmm1, xmm2, xmm3/m128 or the 256-bit register using the form
VADDPS ymm1, ymm2, ymm3/m256 . A few instructions allow four operands, such as VBLENDVPS

ymm1, ymm2, ymm3/m256, ymm4 , which conditionally copies single-precision floating-point values
from ymm2 or ymm3/m256 to ymm1 based on masks in ymm4. This is an improvement on the previous
form, where xmm0 was implicitly needed, requiring compilers to free up xmm0. Now, with all
registers explicit, there is more freedom for register allocation. Here, m128 is a 128-bit memory
location, xmm1 is the 128-bit register, and so on.

Intel® Advanced Vector Extensions 5

 v1b DRAFT 23 May 2011

Some new instructions are VEX only (not SSE extensions), including many ways to move data into
and out of the YMM registers. Examples are the useful VBROADCASTS[S/D], which loads a single
value into all elements of an XMM or YMM register, and ways to shuffle data around in a register
using VPERMILP[S/D] . (The bracket notation is explained in the Appendix A.)

Intel® AVX adds arithmetic instructions for variants of add, subtract, multiply, divide, square root,
compare, min, max, and round on single- and double-precision packed and scalar floating-point
data. Many new conditional predicates are also useful for 128-bit SSE, giving 32 comparison types.
Intel® AVX also includes instructions promoted from previous SIMD covering logical, blend,
convert, test, pack, unpack, shuffle, load, and store.

The toolset adds new instructions, as well, including non-strided fetching (broadcast of single or
multiple data into a 256-bit destination, masked-move primitives for conditional load and store),
insert and extract multiple -SIMD data to and from 256-bit SIMD registers, permute primitives to
manipulate data within a register, branch handling, and packed testing instructions.

Future Additions

The Intel® AVX manual also lists some proposed future instructions, covered here for
completeness. This is not a guarantee that these instructions will materialize as written.

Two instructions (VCVTPH2PS and VCVTPS2PH) are reserved for supporting 16-bit floating-point
conversions to and from single– and double–floating-point types. The 16-bit format is called half-
precision and has a 10-bit mantissa (with an implied leading 1 for non-denormalized numbers,
resulting in 11-bit precision), 5-bit exponent (biased by 15), and 1-bit sign.

The proposed RDRAND instruction uses a cryptographically secure hardware digital random bit
generator to generate random numbers for 16- 32- , and 64-bit registers. On success, the carry flag
is set to 1 (CF=1). If not enough entropy is available, the carry flag is cleared (CF=0).

Finally, there are four instructions (RDFDBASE, RDGSBASE, WRFSBASE, and WRGSBASE) to read and
write FS and GS registers at all privilege levels in 64-bit mode.

Another future addition is the FMA instructions, which perform operations similar to
A = + A * B + C, where either of the plus signs (+) on the right can be changed to a minus sign (−)
and the three operands on the right can be in any order. There are also forms for interleaved
addition and subtraction. Packed FMA instructions can perform eight single-precision FMA
operations or four double-precision FMA operations with 256-bit vectors.

FMA operations such as A = A * B + C are better than performing one step at a time, because
intermediate results are treated as infinite precision, with rounding done on store, and thus are
more accurate for computation. This single rounding is what gives the “fused” prefix. They are also
faster than performing the computation in steps.

Each instruction comes in three forms for the ordering of the operands A, B, and C, with the
ordering corresponding to a three-digit extension: form 132 does A = AC + B, form 213 does

6 Intel® Advanced Vector Extensions

v1b DRAFT 23 May 2011

A = BA + C, and form 231 does A = BC + A. The ordering number is just the order of the operands
on the right side of the expression.

Availability and Support

Detecting availability of the Intel® AVX features in hardware requires using the CPUID instruction
to query support in the CPU and in the operating system, as detailed later. Second-generation
Intel® Core™ processors (code named Sandy Bridge), released in Q1, 2011, are the first from
Intel® supporting Intel® AVX technology. These processors will not have the new FMA
instructions. For development and testing without hardware support, the free Intel® Software
Development Emulator (see “For More Information” for a link) includes support for all these
features, including Intel® AVX, FMA, PCLMULQDQ, and AES instructions.

To use the Intel® AVX extensions reliably in most settings, the operating system must support
saving and loading the new registers (with XSAVE/ XRSTOR) on thread context switches to prevent
data corruption. To help avoid such errors, operating systems supporting Intel® AVX–aware
context switches explicitly set a CPU bit enabling the new instructions; otherwise, an undefined
opcode (#UD) exception is generated when Intel® AVX instructions are used.

Windows* 7 with Service Pack 1 (SP1) and Windows Server* 2008 R2 with SP1—both 32- and 64-
bit versions—and later versions Windows support Intel® AVX save and restore in thread and
process switches. Linux* kernels from 2.6.30 (June 2009) and later support Intel® AVX, as well.

Detecting Availability and Support

Detection of support for the four areas—Intel® AVX, FMA, AES, and PCLMULQDQ—are similar
and require similar steps consisting of checking for hardware and operating system support for
the desired feature (see Table 1). These steps are (counting bits starting at bit 0):

1. Verify that the operating system supports XGETBV using CPUID.1:ECX.OSXSAVE bit 27 = 1 .

2. At the same time, verify that CPUID.1:ECX bit 28=1 (Intel® AVX supported) and/or bit 25=1
(AES supported) and/or bit 1 2=1 (FMA supported) and/or bit 1 =1 (PCLMULQDQ) are
supported.

3. Issue XGETBV, and verify that the feature-enabled mask at bits 1 and 2 are 11b (XMM state and
YMM state enabled by the operating system).

Table 1. Feature-detection Masks

Feature Bits to check Constant

AVX 28, 27 018000000H

VAES 28, 27, and 25 01A000000H

VPCLMULQDQ 28, 27, and 1 018000002H

Intel® Advanced Vector Extensions 7

 v1b DRAFT 23 May 2011

FMA 28, 27, and 12 018001000H

Example code implementing this process is provided in Listing 1, where the CONSTANT is the value
from Table 1. A Microsoft* Visual Studio* C++ intrinsic version is given later.

Listing 1. Feature Detection

INT Supports_Feature()

 {

 ; result returned in eax

 mov eax, 1

 cpuid

 and ecx, CONSTANT

 cmp ecx, CONSTANT; check desired feature flags

 jne not_supported

 ; processor supports features

 mov ecx, 0; specify 0 for XFEATURE_ENABLED_MASK register

 XGETBV; result in EDX:EAX

 and eax, 06H

 cmp eax, 06H; check OS has enabled both XMM and YMM state support

 jne not_supported

 mov ea x, 1; mark as supported

 jmp done

 NOT_SUPPORTED:

 mov eax, 0 ; // mark as not supported

 done:

 }

Usage

At the lowest programming level, most common x86 assemblers now support Intel® AVX, FMA,
AES, and the VPCLMULQDQ instructions, including MASM (VS2010 version), NASM, FASM, and
YASM. See their respective documentation for details.

For language compilers, Intel® C++ version 11.1 and later and Intel® Fortran compilers support
Intel® AVX through compiler switches, and both compilers support automatic vectorization of
floating-point loops. The Intel® C++ compiler supports Intel® AVX intrinsics (use #include

<immintrin.h> to access intrinsics) and inline assembly and even supports Intel® AVX intrinsics
emulation using #include "avxintrin_emu.h" .

Visual Studio* C++ 2010 with SP1 and later has support for Intel® AVX (see “For More
Information”) when compiling 64-bit code (use the /arch:AVX compiler switch). It supports
intrinsics using the <immintrin.h> header but not inline assembly. Intel® AVX support is also in
MASM, the disassembly view of code, and the debugger views of registers (giving full YMM
support).

In the GNU Compiler Connection (GCC), version 4.4 supports Intel® AVX intrinsics through the
same header, <immintrin.h> . Other GNU toolchain support is found in Binutils 2.20.51.0.1 and
later, gdb 6.8.50.20090915 and later, recent GNU Assembler (GAS) versions, and objdump . If your

8 Intel® Advanced Vector Extensions

v1b DRAFT 23 May 2011

compiler does not support Intel® AVX, you can emit the required bytes under many
circumstances, but first -class support makes your life easier.

Each of the three C++ compilers mentioned supports the same intrinsic operations to simplify
using Intel® AVX from C or C++ code. Intri nsics are functions that the compiler replaces with the
proper assembly instructions. Most Intel® AVX intrinsic names follow the following format:

_mm256_op_suffix(data_type param1, data_type param2, data_type param3)

where _mm256 is the prefix for working on the new 256-bit registers; _op is the operation, like add
for addition or sub for subtraction; and _suffix denotes the type of data to operate on, with the
first letters denoting packed (p), extended packed (ep), or scalar (s). The remaining letters are the
types in Table 2.

Table 2. Intel® AVX Suffix Markings

Marking Meaning

[s/d] Single- or double-precision floating point

[i/u]nnn Signed or unsigned integer of bit size nnn, where nnn is 128, 64, 32, 16, or 8

[ps/pd/sd] Packed single, packed double, or scalar double

epi32 Extended packed 32-bit signed integer

si256 Scalar 256-bit integer

Data types are in Table 3. The first two parameters are source registers, and the third parameter
(when present) is an integer mask, selector, or offset value.

Table 3. Intel® AVX Intrinsics Data Types

Type Meaning

__m256 256-bit as eight single-precision floating-point values, representing a YMM register

or memory location

__m256d 256-bit as four double-precision floating-point values, representing a YMM register

or memory location

__m256i 256-bit as integers, (bytes, words, etc.)

__m128 128-bit single precision floating-point (32 bits each)

__m128d 128-bit double precision floating-point (64 bits each)

Some intrinsics are in other headers, such as the AES and PCLMULQDQ being in <wmmintrin.h> .
Consult your compiler documentation or the web to track down where various intrinsics live.

Intel® Advanced Vector Extensions 9

 v1b DRAFT 23 May 2011

Visual Studio* 2010

For conciseness, the rest of this article uses Visual Studio* 2010 with SP1; similar code should
work on the Intel® compiler or GCC. Visual Studio 2010 with SP1 can automatically generate
Intel® AVX code if you click Project Properties > Configuration > Code Generation, select Not
Set under Enable Enhanced Instruction Set, and then manually add /arch:AVX to the command
line under the Command Line entry. As an example of using intrinsics, Listing 2 offers an
intrinsic -based Intel® AVX feature-detection routine.

Listing 2. Intrinsic-based Feature Detection

// get AVX intrinsics

#include <immintrin.h>

// get CPUID capability

#include <intrin.h>

// written for clarity, not conciseness

#define OSXSAVEFlag (1UL<<27)

#define AVXFlag ((1UL<<28)|OSXSAVEFlag)

#define VAESFlag ((1UL<<25)|AVXFlag|OSXSAVEFlag)

#define FMAFlag ((1UL<<12)|AVXFlag|OSXSAVEFlag)

#define CLMULFlag ((1UL<< 1)|AVXFlag|OSXSAVEFlag)

bool DetectFeature(unsigned int feature)

 {

 int CPUInfo[4], InfoType=1, ECX = 1;

 __cpuidex(CPUInfo, 1, 1); // read the desired CPUID format

 unsigned int ECX = CPUInfo[2]; // the output of CPUID in the ECX register.

 if ((ECX & feature) != feature) // Missing feature

 return false ;

 __int64 val = _xgetbv(0); // read XFEATURE_ENABLED_MASK register

 if ((val&6) != 6) // check OS has enabled both XMM and YMM support.

 return false ;

 return true ;

 }

Mandelbrot Example

To demonstrate using the new instructions, compute Mandelbrot set images using straight C/C++
code (checking to ensure that the compiler did not convert the code to Intel® AVX instructions!)
and the new Intel® AVX instructions as intrinsics, comparing their performance. A Mandelbrot set
is a computationally intensive operation on complex numbers, defined in pseudocode as shown in
Listing 3.

Listing 3. Mandelbrot Pseudocode

z, p are complex numbers

f or each point p on the complex plane

 z = 0

 f or count = 0 to max_iterations

 i f abs(z) > 2.0

10 Intel® Advanced Vector Extensions

v1b DRAFT 23 May 2011

 break

 z = z*z+p

 set color at p based on count reached

The usual image is over the portion of the complex plane in the rectangle (- 2, - 1) to (1,1).
Coloring can be done in many ways (not covered here). Raise the maximum iteration count to
zoom into portions and determine whether a value “escapes” over time.

To really stress the CPU, zoom in and draw the box (0.29768 , 0.48364) to (0.29778 , 0.48354),
computing the grid of counts at multiple sizes and using a max iteration of 4096 . The resulting grid
of counts, when colored appropriately, is shown in Figure 4.

Figure 4. Mandelbrot set (0.29768 , 0.48364) to (0.29778 , 0.48354), with max iterations of 4096

A basic C++ implementation to compute the iteration counts is provided in Listing 4. The absolute
value of the complex number compared to 2 is replaced with the norm compared to 4.0, almost
doubling the speed by removing a square root. For all versions, use single-precision floats to pack
as many elements into the YMM registers as possible, which is faster but loses precision compared
to doubles when zooming in further.

Listing 4. Simple Mandelbrot C++ Code

Intel® Advanced Vector Extensions 11

 v1b DRAFT 23 May 2011

// simple code to compute Mandelbrot in C++

#include <complex>

void MandelbrotCPU(float x1, float y1, float x2, float y2,

 int width, int height, int maxIters, unsigned short * image)

{

 float dx = (x2 - x1)/width, dy = (y2 - y1)/height;

 for (int j = 0; j < height; ++j)

 for (int i = 0; i < width; ++i)

 {

 complex< float > c (x1 +dx*i, y1+dy*j), z(0,0);

 int count = - 1;

 while ((++count < maxIters) && (norm(z) < 4.0))

 z = z*z+c;

 *image++ = count;

 }

}

Test multiple versions for performance: the basic one in Listing 4, a similar CPU version made by
expanding the complex types with floats, an intrinsic -based SSE version, and an intrinsic -based
Intel® AVX version shown in Listing 5. Each version is tested on image sizes of 128×128,
256×256, 512×512, 1024×1024, 2048×2048, and 4096×4096. The performance of each
implementation could likely be improved while retaining its underlying instruction set constraints
with more work , but they should be representative of what you can obtain.

The Intel® AVX version has been carefully crafted to fit as much as possible into the 16 YMM
registers. To help track how you want them to be allocated, the variables are names ymm0 through
ymm15. Of course, the compiler allocates registers as it sees fit, but by being careful, you can try to
make all computations stay in registers this way. (Actually, from looking at the disassembly, the
compiler does not allocate them nicely, and recasting this in assembly code would be a good
exercise to anyone learning Intel® AVX).

Listing 5. Intel® AVX–intrinsic Mandelbrot Implementation

float dx = (x2 - x1)/width;

float dy = (y2 - y1)/height;

// round up width to next multiple of 8

int roundedWidth = (width+7) & ~7UL;

float constants[] = {dx, dy, x1, y1, 1.0f, 4.0f};

__m256 ymm0 = _mm256_broadcast_ss(constants); // all dx

__m256 ymm1 = _mm256_broadcast_ss(constants+1); // all dy

__m256 ymm2 = _mm256_broadcast_ss(constants+2); // all x1

__m256 ymm3 = _mm256_broadcast_ss(constants+3); // all y1

__m256 ymm4 = _mm256_broadcast_ss(constants+4); // all 1's (iter increments)

__m256 ymm5 = _mm256_broadcast_ss(constants+5); // all 4's (comparisons)

float incr[8]={0.0f,1.0f,2.0f,3.0f,4.0f,5.0f,6.0f,7.0f}; // used to reset the i position when

 j increases

__m256 ymm6 = _mm256_xor_ps(ymm0,ymm0); // zero out j counter (ymm0 is just a dummy)

for (int j = 0; j < height; j+=1)

{

 __m256 ymm7 = _mm256_load_ps(incr); // i counter set to 0,1,2,..,7

 for (int i = 0; i < roundedWidth; i+=8)

 {

12 Intel® Advanced Vector Extensions

v1b DRAFT 23 May 2011

 __m256 ymm8 = _mm256_mul_ps(ymm7, ymm0); // x0 = (i+k)*dx

 ymm8 = _mm256_add_ps(ymm8, ymm2); // x0 = x1+(i+k)*dx

 __m256 ymm9 = _mm256_mul_ps(ymm6, ymm1); // y0 = j*dy

 ymm9 = _mm256_add_ps(ymm9, ymm3); // y0 = y1+j*dy

 __m256 ymm10 = _mm256_xor_ps(ymm0,ymm0); // zero out iteration counter

 __m256 ymm11 = ymm10, ymm12 = ymm10; // set initial xi=0, yi=0

 unsigned int test = 0;

 int iter = 0;

 do

 {

 __m256 ymm13 = _mm256_mul_ps(ymm11,ymm11); // xi*xi

 __m256 ymm14 = _mm256_mul_ps(ymm12,ymm12); // yi*yi

 __m256 ymm15 = _mm256_add_ps(ymm13,ymm14); // xi*xi+yi*yi

 // xi*xi+yi*yi < 4 in each slot

 ymm15 = _mm256_cmp_ps(ymm15,ymm5, _CMP_LT_OQ);

 // now ymm15 has all 1s in the non overflowed locations

 test = _mm256_movemask_ps(ymm15)&255; // lower 8 bits are comparisons

 ymm15 = _mm256_and_ps(y mm15,ymm4);

 // get 1.0f or 0.0f in each field as counters

 // counters for each pixel iteration

 ymm10 = _mm256_add_ps(ymm10,ymm15);

 ymm15 = _mm256_mul_ps(ymm11,ymm12); // xi*yi

 ymm11 = _mm256_sub_ps(ymm13,ymm14); // x i*xi - yi*yi

 ymm11 = _mm256_add_ps(ymm11,ymm8); // xi <- xi*xi - yi*yi+x0 done!

 ymm12 = _mm256_add_ps(ymm15,ymm15); // 2*xi*yi

 ymm12 = _mm256_add_ps(ymm12,ymm9); // yi <- 2*xi*yi+y0

 ++iter;

 } while ((test != 0) && (iter < maxIters));

 // convert iterations to output values

 __m256i ymm10i = _mm256_cvtps_epi32(ymm10);

 // write only where needed

 int top = (i+7) < width? 8: width&7;

 for (int k = 0; k < top; ++k)

 image[i+k+j*width] = ymm10i.m256i_i16[2*k];

 // next i position - increment each slot by 8

 ymm7 = _mm256_add_ps(ymm7, ymm5);

 ymm7 = _mm256_add_ps(ymm7, ymm5);

 }

 ymm6 = _mm256_add_ps(ymm6,ymm4); // increment j counter

}

The full code for all versions and a Visual Studio* 2010 with SP1 project, including a testing
harness, is available at from the links in the “For More Information” section.

The results are shown in Figures 5 and 6. To prevent tying numbers too much to a specific CPU
speed, Figure 5 shows performance of each version relative the CPU version, which represents a
straightforward non-SIMD C/C++ implementation of the algorithm. For those who much know, the
tests were run on a system with Intel® Core™ i7-2600K CPU @ 3.40 GHz, RAM 16GB, Windows* 7

Intel® Advanced Vector Extensions 13

 v1b DRAFT 23 May 2011

x64 Ultimate with Service Pack 1, and no other programs running during testing, but the relative
performance should be similar on other machines. As expected, the SSE version performs almost 4
times as well, because it is doing 4 pixels per pass, and the Intel® AVX version performs almost 8
times as well as the CPU version. Because there is overhead from loops, memory access, less-than-
perfect instruction ordering, and other factors, 4- and 8-fold improvements should be about the
best possible, so this is pretty good for a first try.

Figure 5. Relative performance across sizes

The second graph in Figure 6 shows that the pixels computed per millisecond are fairly constant
over each size; again, the algorithms show almost quadrupling of performance from the CPU to
SSE version and another doubling from the SSE to Intel® AVX version.

0.22 0.22 0.22 0.22 0.22 0.22

1.00 1.00 1.00 1.00 1.00 1.00

3.50 3.50 3.52 3.57 3.61 3.66

7.00
6.59

7.05 7.22 7.41 7.58

128 256 512 1024 2048 4096

Performance relative to float version
(higher is better)

Complex Float SSE Intel® AVX

14 Intel® Advanced Vector Extensions

v1b DRAFT 23 May 2011

Figure 6. Absolute performance across sizes

Conclusion

This article provided a mid-level overview of the new Intel® Advanced Vector Extensions. These
extensions are similar to previous SSE instructions but offer a much larger register space and add
some new instructions. The Mandelbrot example shows performance gains over previous
technology in the amount expected. For full details, be sure to check out the Intel® Advanced
Vector Extensions Programming Reference (see “For More Information” for a link).

Happy hacking!

For More Information

Intel® Advanced Vector Extensions Programming Reference at
http://software.i ntel.com/file/35247

Federal Information Processing Standards Publication 197, “Announcing the Advanced Encryption
Standard,” at http://csrc.nist.gov/publications/fips/fips197/fips -197.pdf

The IEEE 754-2008 floating-point format standard at http://en.wikipedia.org/wiki/IEEE_754 -
2008

Floating-Point Support for 64-Bit Drivers at http://msdn.microsoft.com/en -
us/library/ff545910.aspx

130.03 130.29 130.16 130.02 129.99 129.97
585.14 585.14 581.25 580.61 579.64 579.64

2048.00 2048.00 2048.00 2072.28 2094.01 2123.16

4096.00
3855.06

4096.00 4194.30 4297.44 4396.55

128 256 512 1024 2048 4096

Pixels per millisecond
(higher is better)

Complex Float SSE Intel® AVX

http://software.intel.com/file/35247
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://en.wikipedia.org/wiki/IEEE_754-2008
http://en.wikipedia.org/wiki/IEEE_754-2008
http://msdn.microsoft.com/en-us/library/ff545910.aspx
http://msdn.microsoft.com/en-us/library/ff545910.aspx

Intel® Advanced Vector Extensions 15

 v1b DRAFT 23 May 2011

Wikipedia’s entry on the Mandelbrot set at http://en.wikipedia.org/wi ki/Mandelbrot_set

Intel® Software Development Emulator at http://software.intel.com/en -us/articles/intel -
software-development-emulator

The complete Mandelbrot Intel® AVX implementation for download at http:// www.lomont.org

http://en.wikipedia.org/wiki/Mandelbrot_set
http://software.intel.com/en-us/articles/intel-software-development-emulator/
http://software.intel.com/en-us/articles/intel-software-development-emulator/
http://www.lomont.org/

16 Intel® Advanced Vector Extensions

v1b DRAFT 23 May 2011

Appendix A: Instruction Set Reference

Many instructions come in packed or scalar form, meaning that they work on multiple parallel
elements or on a single element in the register—a distinction marked as [P/S]. Entry lengths come
in double or single precision for floating-point (doubles and singles, for brevity); marked [D/S]; and
the integer forms byte, word, doubleword, and quadword, marked [B/W/D/Q]. Integer forms also
sometimes come in signed or unsigned forms, marked [S/U]. Some instructions work on high or
low portions of registers, marked as [H/L]; other optional components are in the tables.
Instructions coming in SSE form and Intel® AVX form are prefixed with a (V) for the Intel® AVX
form, allowing three operands and 256-bit register support. Entries in square brackets ([]) are
required; entries in parentheses (()) are optional.

Examples:

Ç (V)ADD[P/S][D/S] is the addition of packed or scalar, double or single, with eight possible
forms—VADDPD, VADDPS, VADDSD, VADDSS, and versions without the leading V.

Ç (V)[MIN/MAX][P/S][D/S] represents 16 different instructions for a min or max of packed or
scalar of double or single precision.

The next table represents the multiple comparison types. VEX-prefixed instructions have 32
comparison types; non–VEX-prefixed comparisons only allow those eight types in parentheses.
Each comparison type comes in multiple flavors, where O = ordered, U = unordered, S = signaling,
and Q = non-signaling. Ordered/unordered tells whether the comparison is false or true if one
operand is NaN (Not-a-Number in floating point, which happens when something failed during the
computation, such as divide by 0 or the square root of a negative number). Signaling/non -
signaling states whether an exception is fired when at least one operand is QNaN (Quiet Not-a-
Number—useful for error trapping).

Type Flavors Meaning

EQ (OQ) , UQ, OS, US Equal

LT (OS) , OQ Less than

LE (OS) , OQ Less than or equal to

UNORD (Q) , S Tests for unordered (NaN)

NEQ (UQ) , US, OQ, OS Not equal

NLT (US) , UQ Not less than

NLE (US) , UQ Not less than or equal to

ORD (Q) , S Tests for ordered (not NaN)

NGE US, UQ Not greater than or equal to

Intel® Advanced Vector Extensions 17

 v1b DRAFT 23 May 2011

Type Flavors Meaning

NGT US, UQ Not greater than

FALSE OQ, OS Comparison is always false

GE OS, OQ Greater than or equal to

GT OS, OQ Greater than

TRUE UQ, US Comparison is always true

Finally, here are all the Intel® AVX instructions:

Arithmetic Description

(V) [ADD/SUB/MUL/DIV] [P/S][D/S

]
Add/subtract/multiply/divide packed/scalar double/single

(V)ADDSUBP[D/S] Packed double/single add and subtract alternating indices

(V)DPP[D/S] Dot product, based on immediate mask

(V)HADDP[D/S] Horizontally add

(V) [MIN/ MAX] [P/S][D/S] Min/max packed/scalar double/single

(V)MOVMSKP[D/S] Extract double/single sign mask

(V)PMOVMSKB Make a mask consisting of the most significant bits

(V)MPSADBW Multiple sum of absolute differences

(V)PABS[B/W/D] Packed absolute value on bytes/words/doublewords

(V)P [ADD/SUB] [B/W/D/ Q] Add/subtract packed bytes/words/doublewords/quadwords

(V)PADD[S/U]S[B/W] Add packed signed/unsigned with saturation bytes/words

(V)PAVG[B/W] Average packed bytes/words

(V)PCLMULQDQ Carry-less multiplication quadword

(V)PH [ADD/SUB] [W/D] Packed horizontal add/subtract word/doubleword

(V)PH [ADD/SUB] SW Packed horizontal add/subtract with saturation

(V)PHMINPOSUW Min horizontal unsigned word and position

(V)PMADDWD Multiply and add packed integers

(V)PMADDUBSW Multiply unsigned bytes and signed bytes into signed words

(V)P [MIN/ MAX] [S/U][B/W/D] Min/max of packed signed/unsigned integers

(V)PMUL[H/L][S/U]W Multiply packed signed/unsigned integers and store high/low result

18 Intel® Advanced Vector Extensions

v1b DRAFT 23 May 2011

Arithmetic Description

(V)PMULHRSW Multiply packed unsigned with round and shift

(V)PMULHW Multiply packed integers and store high result

(V)PMULL[W/D] Multiply packed integers and store low result

(V)PMUL(U)DQ Multiply packed (un)signed doubleword integers and store quadwords

(V)PSADBW Compute sum of absolute differences of unsigned bytes

(V)PSIGN[B/W/D] Change the sign on each element in one operand based on the sign in the

other operand

(V)PS[L/R]LDQ Byte shift left/ right amount in operand

(V)SL[L/AR/LR][W/D/Q] Bit shift left/arithmetic right/logical right

(V)PSUB(U)S[B/W] Packed (un)signed subtract with (un)signed saturation

(V)RCP[P/S]S Compute approximate reciprocal of packed/scalar single precision

(V)RSQRT[P/S]S Compute approximate reciprocal of square root of packed/scalar single

precision

(V)ROUND[P/S][D/S] Round packed/scalar double/single

(V)SQRT[P/S][D/S] Square root of packed/scalar double/single

VZERO[ALL/UPPER] Zero all/upper half of YMM registers

Comparison Description

(V)CMP[P/S][D/S] Compare packed/scalar double/single

(V)COMIS[S/D] Compare scalar double/single, set EFLAGS

(V)PCMP[EQ/GT][B/W/D/Q] Compare packed integers for equality/greater than

(V)PCMP[E/I]STR[I/M] Compare explicit/implicit length strings, return index/mask

Control Description

V[LD/ST] MXCSR Load/store MXCSR control/status register

XSAVEOPT Save processor extended states optimized

Conversion Description

(V)CVTx2y Convert type x to type y, where x and y are chosen from

Intel® Advanced Vector Extensions 19

 v1b DRAFT 23 May 2011

DQ and P[D/S] ,

[P/S]S and [P/S] D, or

S[D/S] and SI .

Load/store Description

VBROADCAST[SS/SD/F128] Load with broadcast (loads single value into multiple locations)

VEXTRACTF128 Extract 128-bit floating-point values

(V)EXTRACTPS Extract packed single precision

VINSERTF128 Insert packed floating-point values

(V)INSERTPS Insert packed single-precision values

(V)PINSR[B/W/D/Q] Insert integer

(V)LDDQU Move quad unaligned integer

(V)MASKMOVDQU Store selected bytes of double quadword with NT Hint

VMASKMOVP[D/S] Conditional SIMD packed load/store

(V)MOV[A/U]P [D/S] Move aligned/unaligned packed double/single

(V)MOV[D/Q] Move doubleword/quadword

(V)MOVDQ[A/U] Move double to quad aligned/unaligned

(V)MOV[HL/LH]P[D/S] Move high-to-low/low-to-high packed double/single

(V)MOV[H/L]P[D/S] Move high/low packed double/single

(V)MOVNT[DQ/PD/PS] Move packed integers/doubles/singles using a non-temporal hint

(V)MOVNTDQA Move packed integers using a non-temporal hint, aligned

(V)MOVS[D/S] Move or merge scalar double/single

(V)MOVS[H/L]DUP Move single odd/even indexed singles

(V)PACK[U/S]SW[B/W] Pack with unsigned/signed saturation on bytes/words

(V)PALIGNR Byte align

(V)PEXTR[B/W/D/Q] Extract integer

(V)PMOV[S/Z]X[B/W/D][W/D/Q] Packed move with sign/zero extend (only up in length , DD, DW, etc.

disallowed)

Logical Description

20 Intel® Advanced Vector Extensions

v1b DRAFT 23 May 2011

Logical Description

(V) [AND/ ANDN/OR]P[D/S] Bitwise logical AND/AND NOT/OR of packed double/single values

(V)PAND(N) Logical AND (NOT)

(V)P [OR/XOR] Bitwise logical OR/exclusive OR

(V)PTEST Packed bit test, set zero flag if bitwise AND is all 0

(V)UCOMIS[D/S] Unordered compare scalar doubles/singles and set EFLAGS

(V)XORP[D/S] Bitwise logical XOR of packed double/single

Shuffle Description

(V)BLENDP[D/S] Blend packed double/single; selects elements based on mask

(V)BLENDVP[D/S] Blend values

(V)MOVDDUP Copies even values to all values

(V)PBLENDVB Variable blend packed bytes

(V)PBLENDW Blend packed words

VPERMILP[D/S] Permute double/single values

VPERM2F128 Permute floating-point values

(V)PSHUF[B/D] Shuffle packed bytes/doublewords based on immediate value

(V)PSHUF[H/L]W Shuffle packed high/low words

(V)PUNPCK[H/L][BW/WD/DQ/QDQ] Unpack high/low data

(V)SHUFP[D/S] Shuffle packed double/single

(V)UNPCK[H/L]P[D/S] Unpack and interleave packed/scalar doubles/singles

AES Description

AESENC/AESENCLAST Perform one round of AES encryption

AESDEC/AESDECLAST Perform one round of AES decryption

AESIMC Perform the AES InvMixColumn transformation

AESKEYGENASSIST AES Round Key Generation Assist

Future Instructions Description

[RD/WR][F/G]SBASE Read/write FS/GS register

Intel® Advanced Vector Extensions 21

 v1b DRAFT 23 May 2011

RDRAND Read random number (into r16, r32, r64)

VCVTPH2PS Convert 16-bit floats to single precision floating-point values

VCVTPS2PH Convert single-precision values to 16-bit floating-point values

FMA Each [z] is the string 132 or 213 or 231, giving the order the operands

A,B,C are used in:

132 is A=AC+B

213 is A=AB+C

231 is A=BC+A

VFMADD[z][P/S][D/S] Fused multiply add A = r1 * r2 + r3 for packed/scalar of double/single

VFMADDSUB[z]P[D/S] Fused multiply alternating add/subtract of packed double/single

A = r1 * r2 + r3 for odd index, A = r1 * r2-r3 for even

VFMSUBADD[z]P[D/S] Fused multiply alternating subtract/add of packed double/single A = r1 * r2-

r3 for odd index, A = r1 * r2+r3 for even

VFMSUB[z][P/S][D/S] Fused multiply subtract A = r1 * r2-r3 of packed/scalar double/single

VFNMADD[z][P/S][D/S] Fused negative multiply add of packed/scalar double/single A = -r1 * r2+r3

VFNMSUB[z][P/S][D/S] Fused negative multiply subtract of packed/scalar double/single A = -

r1 * r2-r3

	Introduction to Intel® Advanced Vector Extensions
	Instruction Set Overview
	Intel® AVX Instruction Classes
	Future Additions

	Availability and Support
	Detecting Availability and Support

	Usage
	Visual Studio* 2010

	Mandelbrot Example
	Conclusion
	For More Information
	Appendix A: Instruction Set Reference

