Introduction to Intel® Advanced Vector Extensions

By Chris Lomont

Intel® Advanced Vector Extensions (AVX} a set of instructions for doing Single Instruction
Multiple Data (SIMD) operations on Inte® architecture CPUs These instructions extendorevious
SIMD offerings (inder the acronymsMMXand SSE by adding the following new features:
¢ The 128-bit SIMDregisters have been expandedo 256 bits. Intel® AVX is designed to
support 512 or 1024 bits in the future.

¢ Three-operand, nondestructive operatons have been addedPrevioustwo-operand
instructions performed operations such asA = A + B, which overwrites a sourceoperand;
the newoperandscan performoperations like A=B + C, leaving theoriginal source
operandsunchanged

¢ A few instructions takefour-register operands allowing smaller and faster code by
removing unnecessary instructions

¢ Memory alignment requirements for operands are relaxed.

¢ A new extension coding scheme (VEXpgs beendesigned to make future additions esier
as well as making coding of instructions smalleand faster to execute

Closely related to theseadvancesare the new FusedMultiply —Add (FMA) instructions, which

allow faster and more accurate specialized operations such as single instructioreA* B+ C. The
FMA instructions should be available in thsecondgeneration Intel® Core™CPU Other features
include new instructions for dealing with Advanced Encryption Standard (AES2ncryption and
decryption, apacked carryless multiplication operation (PCLMUIQDQ) useful for certain
encryption primitives, and some reserved slots for future instructionssuch as a hardware random
number generator.

Instruction Set Overview

The new instructions are encoded using what Intel calls ¥EX prefixwhich is a two- or three-byte
prefix designed to clean up the complexity of current and future x86/x64 instruction encoding.
The two new VEX prefixes are formed from two obsolete 3RBit instructions—Load Pointer Using
DS(LDS—0xC4, 3-byte form) and Load Pointer Using ESLES—0xC5 two-byte form)—which load
the DS and ES segment registers in 3t mode. In 64-bit mode, qocodesLDSand LES generate an
invalid-opcode exceptionbut under Intel® AVX these opcodesre repurposed for encoding new
instruction prefixes. As a lesult, the VEX instructions can only be used when running in @it
mode. The prefixes allow encoding more registershan previous x86 instructions and are requirel
for accessing thenew 256-bit SIMDregisters or using the three and four-operand syntax. As a
user, you do not need to worry about thislu n | e s s timg@assemblersordisassemblery.

2 Intel® Advanced Vector Extensions

Note The rest of this article assumes operation in 64it mode.

SIMD instructions allow processing of multiple pieces of data in a single step, speeding up
throughput for many tasks from video encodingand decoding to image processing to data
analysis to physics simulationsintel® AVX instructions work onlnstitute of Electrical and
Electronics EngineerqIEEE)-754 floating-point values in 32-bit length (called single precision
and in 64-bit length (called double precisiol. IEEE-754 is the standard definirg reproducible,
robust floating-point operation and is the standard for most mainstream numerical computatios

The older, related SSE instructions alsgsupport various signed and unsigned integer sizes,

including signed and unsigned byte (B, -®it), word (W, 16-bit), doubleword (DW, 32-bit),

guadword (QW, 64bit), and doublequadword (DQ, 128bit) lengths. Not all instructions are

available in all size conbinations; for details, see thelinks providedi n “ For Mor &Seé nf or
Figure 2 later in this article for a graphical representation of thedata types

The hardware supportingIntel® AVX(and FMA)consists of thel6 256-bit YMM registers YMMO
YMM15 and a 32bit control/status register called MXCSRThe YMM registers are aliased over the
older 128-bit XMM registersused for SSEtreating the XMM registers as the lower half of the
corresponding YMM registeras shownin Figure 1.

Bits 0-5 of MXCSR indicate SIMD floatiRgo i nt except i o n-safteavbeindgisettheyt i c ky
remain set until cleared usingLDMXCSRr FXRSTOR Bits 712 mask individual exceptions when set,
initially set by apower-up or reset. Bits 85 represent invalid operation, denormal, divide by zero,
overflow, underflow, and precision respectively. For detailsseet he | i nks " For Mor e

256 bits 128 bits

YMNIO

YMNIL

YMNIL5

255 128 127 0
Bit #

Figure 1. XMMregisters overlay theYMM registers

vlb DRAFT 2May 2011

Intel® Advanced Vector Extensions | 3

Figure 2 illustrates the data types used in the SSE anidtel® AVX instructions. Roughly, fointel®
AVX, any multiple of 32bit or 64-bit floating-point type that adds to 128 or 256 bits is allowed as
well as multiples of any integer type thatadds to 128 bits.

T e

SSE and AVX-128 types 2% double

‘ ‘ ‘ ‘ 4x 32-bit doubleword

2x 64-bit quadword
AVX-256 types _
W W W W W W W e

4x double

1x 128-bit doublequadword

Figure 2. Intel® AVXand SSHlatatypes

Instructions often come in scalar and vector versiongsillustrated in Figure 3. Vector versions
operatebyt r eat i ng data in the r e thesalaeversioniomyogpesmtesal | e |
on one entry in each register. This distinction allows less data movemerior somealgorithms,

providing better overall throughput.

SIMD Mode Scalar Mode

+ +

B7I B6 BS B4 BI BZI B1I BO]

A7+I A6+B6 | A5+B5 | A4+B4 ABI A2I A1+BI A0+BO 3

Figure 3. SIMD versusscalar operations

vlb DRAFT 2May 2011

4 Intel® Advanced Vector Extensions

Data ismemory alignedwhen the data to be operated uporasan n-byte chunk is stored on am-
byte memory boundary. For example, when loading 256it data into YMM registers, if the data
source is 256bit aligned, the data is calledaligned.

For SSE operations, memory alignment was required unless explicitly stated. For example, under
SSE, there were sgrific instructions for memory-aligned and memoryunaligned operations,such
asthe movAapPfmove-aligned packed double) andiovupigmove-unaligned packed double)
instructions. Instructions not split in two like this required aligned accesses.

Intel® AVX ha relaxed some memory alignment requirementso nowIntel® AVX by default

allows unaligned accesshowever, this accessmay comeat a performance slowdown, so the old

rule of designing your data to be memory aligned is still good practicd §-byte alignedfor 128-bit

access and 3z2byte aligned for 256-bit access).The main exceptions are th&/EXextended

versions of the SSE instructions that explicitly requireadnemory-aligned data These instructions

still require aligned data. Other specific instructions requiring aligned accessre listed in

Table 2.4 ofthe Intel® Advanced Vector Extensions Programming Referefice e e “ For Mor e
I nformation” for a | ink)

Another performance concern besides unaligned datasuesis that mixing legacyXMM-only
instructions and newer Intel® AVX instrudions causes delaysso mnimize transitions between
VEXencoded instructions and legacy SSE codgaid another way,do not mix VEXprefixed
instructions and non-VEXprefixed instructions for optimal throughput. If you must do so,
minimize transitions between the two by grouping instructions of the same VEX/notVEX class.
Alternatively, there is no transition penalty if the upper YMM bits are set to zero viazZEROUPPERI
VZEROALL which compilers should automattally insert. This insertion requires an extra
instruction, so profiling is recommended.

Intel® AVX Instruction Classes

As mentioned,Intel® AVX adds support for many new instructions and extends current SSE
instructions to the new 256-bit registers, with most old SSE instructions having &-prefixed
Intel® AVX version for accessing new register sizes and thregperand forms.Depending on how
instructions are counted, there are up to a few hundredew Intel® AVX instructions.

For example, the old tweoperand SSEnstruction ADDPS xmm1, xmm2/m128 can now be expressed
in three-operand syntax asvADDPS xmm1, xmm2, xmm3/m128 or the 256-bit register usingthe form
VADDPS ymm1, ynm2, ymm3/m256 . A few instructions allow four operandssuch asvBLENDVPS
ymm1, ymm2, ymm3/m256, ynm4 , which conditionally copiessingle-precision floating-point values
from ymm20r ymm3/m256 to ymmibased on masks iymm4 This is an improvement onthe previous
form, where xmmowas implicitly needed, requiring compilers to free upimma Now, with all
registers explicit, there is more freedomfor register allocation.Here, m128is a 128bit memory
location, xmm1is the 128-bit register, and so on.

vlb DRAFT 2May 2011

Intel® Advanced Vector Extensions | 5

Some new instructions are VEX only (not SSE extensionsjcluding many ways to move data into
and out of the YMM registersExamples arghe useful VBROADCASTS[S/D], which loads a single
value into all elements of a XMM or YMM registerand ways to shuffle data around in a register
using VPERMILP[S/D] . (The bracket notation is explained in theAppendix A.)

Intel® AVX addsarithmetic instructions for variants of add, subtract, multiply, divide, square root,
compare, min, maxand round on single- and double-precision packed and scalar floatingpoint
data. Many new conditional predicatesare also wseful for 128-bit SSE giving 32 comparison types.
Intel® AVXalsoincludesinstructions promoted from previous SIMDcovering logical, blend,
convert, test,pack,unpack, shuffle, loadand store.

The toolsetadds new instructions, as wellincluding non-strided fetching (broadcast of single or
multiple data into a 256-bit destination, maskedmove primitive s for conditional load and store),
insert and extract multiple -SIMD data toand from 256-bit SIMD registers, permute primitives to
manipulate data within a register, branch handling, andpackedtesting instructions.

Future Additions

The Intel® AVX manual also lists some proposed future instructions, covered here for
completenessThis is not a guarantee that thesenstructions will materialize as written.

Two instructions (VCVTPH2Psand VCVTPS2PH are reserved for supporting 16-bit floating-point
conversions to andfrom single—and double—floating-point types. The 16-bit format is called half-
precisionand has a D-bit mantissa (with an implied leading 1 for non-denormalized numbers,
resulting in 11-bit precision), 5-bit exponent (biased by 15), and kbit sign.

The proposed RDRANDNStruction uses a cryptographically secure hardwaraligital random bit
generator to generaterandom numbers for 16- 32- , and64-bit registers. On success, the carry flag
is setto 1 CF=1). If not enough entropy is available, the carry flag is cleared=0).

Finally, there are bur instructions (RDFDBASERDGSBASENRFSBASEND WRGSBASHO read and
write FS and GS registers at all privilege leveis 64-bit mode.

Another future addition is the FMAinstructions, which perform operations similar to

A=+ A*B+C, where either of theplus signs) on the right can be changedtomi nus si gn (
andthe three operands on the right can be in any order. There are also forms for interleaved

addition and subtraction. Packed FMA instructions can perform eight singigrecision FMA

operations or four double-precision FMA @erations with 256-bit vectors.

FMA operations such as A A* B + C are better thanperforming one step at a timebecause

intermediate results are treated as infinite precisionwith rounding done on store,and thus are
more accurate for computation. This single rounding iswhatgivesh e “ f used” prefi x
faster than performing the computation in steps.

Each instruction comes in three forms for the ordering of the operands A, B, and C, with the
ordering corresponding to athree-digit extension: form 132 does A= AC+ B, fam 213 does

vlb DRAFT 2May 2011

6 Intel® Advanced Vector Extensions

A=BA+C, and form231 does A=BC+ A. The ordering number is just the order of the operands
on the right side of the expression.

Availability and Support

Detecting availability of thelntel® AVX features in hardware requires using thepPuID instruction

to query support in the CPU and in the operating systerasdetailed later. Secondgeneration

Intel® Cor e™ pr oc es s oSarxdy Rridge, dekeasedanmd, @011, are the first from
Intel® supporting Intel® AVXtechnology. These processorwill not have the new FMA
instructions. For development and testing without hardware support, the free Inted Software
Development Emulator(see “ For Mor e | nihcudessaugportdonall thdseo r a
features, including Intel® AVX, FMAPCLMUIQDQ and AESnstructions.

To use thelntel® AVX extensions reliably in most settings, the operating system must support
savingand loading the new registers (withxSAVH XRSTOR on thread context switches to prevent
data corruption. To help avoid such erros, operating systems supportingntel® AVXx-aware
context switches explicitly set a CPU bit enabling the new instructions; otherwisan undefined
opcode UD) exception is generated wherintel® AVX instructions are used.

Windows* 7 with Service Packl (SPJ) and Windows Server 2008 R2with SP1—both 32- and 64
bit versions—and later versions Windows supportintel® AVX saveandrestore in thread and
process switches. LinuX kernels from 2.6.30(June2009) and later supportintel® AVX as well

DetectingAvailability and Support

Detection of support for the fourareas—Intel® AVX, FMA, AES, arRCLMULQD®&-are similar
and require similar steps consisting of checking for hardware and operating system support for
the desired feature(see Tablel). These steps @ (counting bits starting at bit 0):

1. Verify that the operating systemsupports XGETBWSING CPUID.1:ECX.OSXSAVE bit 27 =1.

2. At the same timeverify that CPUID.1:ECX bit 28=1 (Intel® AVX supported) and/or bit 25=1
(AES supported) and/orbit 1 2=1 (FMA supported) and/or bit1 =1 (PCLMUIQDQ) are
supported.

3. IssuexGETBVand verify that the feature-enabled mask at bits 1 and 2 are 11b (XMM state and
YMM state enabled byhe operating systen).

Table 1. Feature-detection Masks

Feature Bits to check Constant
AVX 28, 27 018000000H
VAES 28, 27, and 25 | 01A000000H

VPCLMUQRDQ | 28,27,and1 | 018000002H

vlb DRAFT 2May 2011

Intel® Advanced Vector Extensions | 7

FMA 28, 27,and 12 | 018001000H

Example code implementing thiprocessis provided in Listing 1, where theCONSTANTS the value
from Table 1. AMicrosoft* Visual Studid* C++ intrinsic version is given later.

Listing 1. Feature Detection

INT Supports_Feature()

; result returned in eax

mov eax, 1

cpuid

and ecx, CONSTANT

cmp ecx, CONSTANT; check desired feature flags

jne not_supported

; processor supports features

mov ecx, 0; specify 0 for XFEATURE_ENABLED_MASK register
XGETBYV; result in EDX:EAX

and eax, 06H

cmp eax, 06H; check OS has enabled both XMM and YMM state support
jne not_supported

mov ea X, 1; mark as supported

jmp done

NOT_SUPPORTED:

mov eax, 0 ; // mark as not supported

done:

}

Usage

At the lowest programming level, nost common x86 assemblers now suppoiintel® AVX, FMA,
AES, and th&/PCLMUKDQinstructions, including MASM(VS2010 version), NASM, FASM, and
YASM. See their respective documentation for details.

For language compilersintel® C++ version 11.1 andater and Intel® Fortran compilers support
Intel® AVX through compiler switches and both compilers support automat vectorization of
floating-point loops. The Intel® C++ compiler supportsintel® AVX intrinsics (use#include
<immintrin.h> to access intrinsics) and inline assembland even supportsintel® AVX intrinsics
emulation using#include "avxintrin_emu.h"

Visual Studids C++ 2010with SP1 andater has support forintel® AVX(see “ For Mor e
| nf or mavhen aompilipng 64-bit code (use the/arch:Avx compiler switch). It supports

intrinsics using the <immintrin.h> header but not inline assemblyintel® AVX sugort is also in
MASM, the disassembly view of code, and the debugger views of registaiwiag full YMM

support).

In the GNU Compiler ConnectionGCG, version4.4 supportsintel® AVXintrinsics through the
same headergimmintrin.n> . Other GNU toolchairsupport is found in Binutils 2.20.51.0.1 and
later, gdb 6.8.50.20090915 and latemecent GNU Assembler (GAS)kersions,and objdump . If your

vlb DRAFT 2May 2011

8 Intel® Advanced Vector Extensions

compiler does not supportintel® AVX you canemit the required bytes under many
circumstances, buffirst-class sugport makes your life easier.

Eachof the three C++ compiles mentioned supports the same intrinsic operations to simplify
using Intel® AVX from Cor C++ codelntri nsicsare functionsthat the compiler replaces with the
proper assembly instructions.Most Intel® AVX intrinsic names follow the following format:

_mm256_op_suffix(data_type paraml, data_type param2, data_type param3)

where _mm256is the prefix for working on the new 256bit registers; _op is the operation, likeadd
for addition or sub for subtraction; and_suffix ~ denotes the type of data to operate on, with the
first letters denoting packed (), extended packed €p), or scalar §). The remaining letters are the

types in Table 2.

Table 2. Intel® AVX Suffix Markings

Marking Meaning

[s/d] Single or double-precision floatingoint

[i/uJnnn Signedor unsignedinteger of bit sizexnn,wherennnis 128,64,32,16, or 8
[ps/pd/sd] Packed singlgpackeddouble, or scalar double

epi32 Extended packed 3Rit signed integer

si256

Scalar 25%it integer

Data types are in Table. The first two parameters are source registersand the third parameter
(when present) is an integer maskselector, or offset value.

Table 3. Intel® AVX Intrinsics Data Types

Type Meaning

__m256 256-bit aseightsingleprecision floatingpoint values representing a YMM register
or memory location

__m256d 256-bit as fourdouble-precision floatingpoint values representing a YMM register
or memory location

__m256i 256-bit as integers, (bytes, wordstc.)

__mi28 128hit singleprecision floatingpoint (32 bits each)

__ml28d

128-bit double precision floatingoint (64 bits each)

Some intrinsics are in other headers, such as the AES and PCLRIDQ being inckwmmintrin.h>
Consult your compiler documentation or the veb to track down where various intrinsics live.

vlb DRAFT 2May 2011

Intel® Advanced Vector Extensions | 9

Visual Studié 2010

For conciseness, the rest of this article usd&/isual Studio® 2010 with SP1; similar code should
work on the Intel® compiler or GCCVisual Studio 2010 with SP1 can automatically generate
Intel® AVX code if yoiclick Project Properties > Configuration > Code Generation, selectNot
Set under Enable Enhanced Instruction Set, and then manually addarch:AvX to the command
line under the Command Line entry. As an example of using intrinsicd,isting 2 offers an
intrinsic -basedIntel® AVXfeature-detection routine.

Listing 2. Intrinsic-based Feature Detection

/I get AVX intrinsics
#include <immintrin.h>
/I get CPUID capability
#include <intrin.h>

/I written for clarity, not conciseness

#define OSXSAVEFlag (1UL<<27)

#define AVXFlag ((LUL<<28)|OSXSAVEFIlag)
#define VAESFlag ((1UL<<25)|AVXFlag|OSXSAVEFIlag)
#define FMAFlag ((1UL<<12)|AVXFlag|OSXSAVEFIlag)

#define CLMULFlag ((LUL<< 1)|AVXFlag|OSXSAVEFlag)
bool DetectFeature(unsigned int feature)

{
int CPUlnfo[4], InfoType=1, ECX = 1;

__cpuidex(CPUlnfo, 1, 1) /I read the desired CPUID format
unsigned int ECX = CPUInfo[2]; /I the output of CPUID in the ECX register.
if ((ECX & feature) 1= feature) /[Missing feature
return false ;
__inté4 val = _xgetbv(0); /I read XFEATURE_ENABLED_MAStegister
if ((val&6) 1= 6) /I check OS has enabled both XMMand YMMsupport.

return false ;
return true ;

}

Mandelbrot Example

To demonstrate using the new instructims, compute Mandelbrotset images using straight C/C++
code(checking to ensurethat the compiler did not convert the code tdntel® AVX instructions!)
and the newIntel® AVX instructionsas intrinsics, compaing their performance. A Mandelbrot set
is a computationally intensive operation on complex humbers, defineish pseudocodeasshown in
Listing 3.

Listing 3. Mandelbrot Pseudocode

z, p are complex numbers
f or each point p on the complex plane
z =0
f or count = 0 to max_iterations
ifabs(z)>2.0

vlb DRAFT 2May 2011

10 Intel® Advanced Vector Extensions

break
Z =2Z*Z+p
set color at p based on count reached

The usual image is over the portion of the complex plane in threctangle(- 2, - 1) to (1,1).
Coloring can be done in many way&ot covered here). Raise the maximum iteration count to
zoom into portions and determine whethera v al ue “escapes over t

To really stress the CPU, zoom in and draw the box49768 ,0.48364) to (0.29778 ,0.48354),
computing the grid of counts atmultiple sizesand using a max iteration 0f4096 . The resultinggrid
of counts, when colored appropriatelyjs shown inFigure 4.

Figure 4. Mandelbrot set (0.29768 ,0.48364) t0 (0.29778 ,0.48354), with max iterations of 4096

A basicC++implementation to compute theiteration counts is provided in Listing 4. The absolute
value of the complex number compared to 2 is replaced with the norm compared to 4amnost
doubling the speed by removing a square roof-or all versions usesingle-precision floats to pack
as manyelementsinto the YMM registers as possiblewhich is faster but loses precision compared
to doubles when zooming in furthet

Listing 4. Simple Mandelbrot C++ Code

vlb DRAFT 2May 2011

me .

Intel® Advanced Vector Extensions | 11

/I simple code to compute Mandelbrot in C++
#include <complex>
void MandelbrotCPU(float x1, float y1, float x2, float Y2,

int width, int height, int maxiters, unsigned short * image)
{
float dx = (x2 - x1)/width, dy = (y2 - yl)/height;
for (int j = 0; j < height; ++j)
for (int i = 0; i < width; ++i)
{
complex< float > ¢ (X1 +dx*i, yl+dy*), z(0,0);
int count = -1;
while ((++count < maxlters) && (norm(z) < 4.0))
Z = Z*z+c;
*image++ = count;
}
}

Testmultiple versions for performance:the basic one inListing 4, a similar CPU version made by
expanding the complexypes with floats, an intrinsic -based SSE version, and antrinsic -based
Intel® AVX version shown inListing 5. Each versionis tested on image sizes of 128128,
256x256, 512x512,1024x1024, 2048x2048, and4096x4096. The performance of each
implementation could likely be improvedwhile retaining its underlying instruction set constraints
with more work, butthey should be representative of whatyou can obtain.

The Intel® AVX version has been carefully crafted to fit as much as possible intetl6 YMM
registers. To help track howyou want them to be allocated, the variables are namegsimothrough
ymm15 Of coursethe compiler allocates registers as it sees fit, but by being carefybu can try to
make all computations stay in registers thisvay. (Actually, from looking at the disassemblythe
compiler does not allocate them nicely, and recasting this in assembly code would be a good
exercise to anyone learningntel® AVX).

Listing 5. Intel® AVX-intrinsic Mandelbrot Implementation
float dx = (x2-x1)/width;

float dy = (y2 -yl)/height;
/I round up width to next multiple of 8

int roundedWidth = (width+7) & ~7UL;

float constants][] = {dx, dy, x1, yl, 1.0f 4.0f}

__m256 ymmO = _mm256_broadcast_ss(constants); /I all dx

__m256 ymml = _mm256_broadcast_ss(constants+1); /I all dy

__m256 ymm2 = _mm256_broadcast_ss(constants+2); /I al x1

__m256 ymm3 = _mm256_broadcast_ss(constants+3); /I al vyl

__m256 ymm4 = _mm256_broadcast_ss(constants+4); /I all 1's (iter increments)

__m256 ymm5 = _mm256_broadcast_ss(constants+5); /[all 4's (comparisons)

float incr[8]={0.0f,1.0f,2.0f,3.0f,4.0f,5.0f,6.0f,7.0f}; /I used to reset the i position when

j increases
__m256 ymm6 = _mm256_xor_ps(ymmO,ymmO0); // zero out | counter (ymmO is just a dummy)

for (int j = 0; j < height; j+=1)

{
__m256 ymm7 = _mm256_load_ps(incr); /[i counter set to 0,1,2,.7
for (int i = 0; i < roundedWidth; i+=8)

vlb DRAFT 2May 2011

12

test

}

ymmé = _mm256_add_ps(ymm6,ymm4); //

Intel® Advanced Vector Extensions

__m256
ymm8 =
__m256
ymm9 =
__m256
__m256

ymm8 = _mm256_mul_ps(ymm?7,
_mm256_add_ps(ymm8, ymm2);
ymm9 = _mm256_mul_ps(ymm6,
_mm256_add_ps(ymm9, ymma3);
ymm10 = _mm256_xor_ps(ymmO0,ymmO);
ymmll = ymm10, ymm12 = ymm10;

ymmoO);

ymm1);

unsigned int
int iter = 0;
do
{

test = 0;

x0
x0
yO
yO0
zero out

I

set

_ m256 ymm13 = _mm256_mul_ps(ymm11,ymm11); //
_ m256 ymml14 = _mm256_mul_ps(ymm12,ymm12); //
_ m256 ymm15 = _mm256_add_ps(ymm13,ymm14); //

Il Xi*Xi+yi*yi < 4 in each slot

(i+k)*dx
x1+(i+k)*dx
jrdy
yl+j*dy

counter
yi=0

iteration
initial xi=0,

Xi*Xi
yityi
Xi*Xi+yi*yi

ymm15 = _mm256_cmp_ps(ymm15,ymm5, _CMP_LT_OQ);

/I now ymml5 has all 1s in

_mm256_movemask_ps(ymm15)&255; 1l
ymm15 = _mm256_and_ps(y mm15,ymm4);
/I get 1.0f or 0.0f in each field
/I counters for each pixel iteration
ymm10 = _mm256_add_ps(ymm210,ymm15);

ymm15 = _mm256_mul_ps(ymm11l,ymm12);
ymmll = _mm256_sub_ps(ymm13,ymm14);
ymmll = mm256_add_ps(ymm11,ymm8);
ymml2 = mm256_add_ps(ymm15,ymm15);
ymm12 = mm256_add_ps(ymm12,ymm9);

++iter;

} while ((test I= 0) && (iter < maxlters));

/I convert iterations
__m256i ymml0i =

to output values

_mm256_cvtps_epi32(ymm10);

/I write only where needed

int top = (i+7) < width? 8: width&7;

for (int k = 0; k < top; ++Kk)
imagel[i+k+j*width]

/I next i position - increment each slot
ymm7 = _mm256_add_ps(ymm7, ymmb5);
ymm7 = _mm256_add_ps(ymm7, ymmb);

increment |

lower

by 8

the non overflowed

8 bits

as counters

= ymm10i.m256i_i16[2*k];

counter

locations

are comparisons

Xi*yi
Xi*Xi - yityi
Xi <- Xi*Xi
2*Xi*yi
yi <-

- yi*yi+x0 done!

2*Xi*yi+y0

The full codefor all versionsand a Visual Studio® 2010 with SP1project, including a testing

harness,is available atf r o m

the | inks

n

t he *

For Mor e

nfor

The results are shown inFigures5 and 6. To preventtying numbers too much to a specific CPU
speed,Figure 5 shows performance of each version relave the CPU version, which represents a
straightforward non-SIMD C/C++ implementation of the algorithmEor thosewho much know, the

tests

wer e

vlb DRAFT 2May 2011

run

on

a

S-9680K ER @R.401GHz, RAMIG@H, ®indGwst7e ™ | 7

Intel® Advanced Vector Extensions | 13

x64 Ultimate with Service PackL, and no other programs running during testingbut therelative
performance should be similar on other machinesAs expected, the SSE version perfornaémost 4
times as well,becauseit is doing 4 pixels per pass, and thintel® AVX versionperforms almost8
times as wellas the CPU versiorBecausehere is overhead fromloops, memory accesdessthan-
perfect instruction ordering, and other factors 4 and 8-fold improvements should be about the
best possible so this is pretty good for aifst try.

Performance relative to float version
(higher is better)

M Complex W Float i SSE M Intel® AVX

7.00 7.05 7.22 741 78
6.59 __ =

— —

1.0 1.00 1.0
0.22.4 0.22.4 0.22.4

128 256 512 1024 2048 4096

Figure 5. Relative performance across sizes
The second graph irFigure 6 shows that the pixels computed per millisecondre fairly constant

over each size; agairthe algorithms show almost quadrupling of performance fronthe CPU to
SSE versiorand another doubling fromthe SSE tdntel® AVX version.

vlb DRAFT 2May 2011

14 Intel® Advanced Vector Extensions

Pixels per millisecond
(higher is better)

M Complex ®Float & SSE M Intel® AVX

4297.44 4396.55

4096.00 4096.00 4194.30

3855.06

128 256 512 1024 2048 4096

Figure 6. Absolute performance across sizes

Conclusion

This article provided a mid-level overview ofthe new Intel® Advanced Vector ExtensionsThese
extensionsare similar to previous SSE instructions but offer a much larger register space and add
some new instructions.The Mandelbrot example shows performance gains over previous

technology in the amount expectedror full details, be sure to check out théntel® Advanced

Vector Extensions Programming Reference s ee “ For More | nformation”

Happy hacking!

For More Information

Intel® Advanced Vector Extensions Programming Reference
http://software.i ntel.com/file/35247

Federal Information Processing Standards Publicatioh97, “ Announci ng the Adva
St a n dai httpt//csSrc.nist.gov/publications/fips/fips197/fips -197.pdf

The IEEE 7542008 floating-point format standard athttp://en.wikipedia.org/wiki/IEEE_754 -
2008

Floating-Point Support for 64-Bit Drivers at http://msdn.microsoft.com/en -
us/library/ff545910.aspx

vlb DRAFT 2May 2011

http://software.intel.com/file/35247
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://en.wikipedia.org/wiki/IEEE_754-2008
http://en.wikipedia.org/wiki/IEEE_754-2008
http://msdn.microsoft.com/en-us/library/ff545910.aspx
http://msdn.microsoft.com/en-us/library/ff545910.aspx

Intel® Advanced Vector Extensions | 15

Wi ki pedi a’hsMaadelbrotgetabhtip:/én.wikipedia.org/wi ki/Mandelbrot_set

Intel® Software Development Emulatorat http://software.intel.com/en -us/articles/intel -
software-development-emulator

The completeMandelbrot Intel® AVX implementationfor download at http:// www.lomont.org

vlb DRAFT 2May 2011

http://en.wikipedia.org/wiki/Mandelbrot_set
http://software.intel.com/en-us/articles/intel-software-development-emulator/
http://software.intel.com/en-us/articles/intel-software-development-emulator/
http://www.lomont.org/

16 Intel® Advanced Vector Extensions

Appendix A: Instruction Set Reference

Many instructions come inpackedor scalar form, meaningthat they work on multiple parallel
elementsor on a singleelementin the register—a distinction marked as[P/S]. Entry lengths come
in double or single precision for floating-point (doublesand singlesfor brevity); marked [D/S]; and
the integer forms byte, word, doubleword, and quadword, marked[B/W/D/Q]. Integer forms also
sometimes come irsigned or unsignedforms, marked[S/U]. Some instructions work on high or
low portions of registers, marked agH/L]; other optional components are in the tables.
Instructions coming in SSE form andhtel® AVX form are prefixed with a(V) for the Intel® AVX
form, allowing three operands and 256-bit register support. Entries in square brackets (|) are
required; entries in parentheses ()) are optional.

Examples:

¢ (V)ADDI[P/S][D/S] is the addition of paded or scalar, double or single, witheight possible
forms—VADDPRDVADDP$VADDSRVADDSS andversions without the leadingV.

¢ (V)[MIN/MAX][P/S][D/S] represents 16 different instructions for amin or max of packedor
scalar of double or single precision.

The nex table represents the multiple comparison typesVEXprefixed instructions have 32
comparisontypes; non-VEXprefixed comparisonsonly allow those eight types in parentheses.
Each comparison type comes in multiple flavors, where= ordered, U = unordered, s = signaling,
and Q= non-signaling. Ordered/unordered tells whether the comparison is falseor true if one
operand isNaN (Not-a-Numberin floating point, which happens when something failed during the
computation, such as divide by O othe square root of a negative numbeéx. Signding/non -
signaling stateswhether an exceptionis fired when at least one operand is QNaN)uiet Nota-
Number—useful for error trapping).

Type Flavors Meaning

EQ (0Q), UQ OS US Equal

T (0S), 0Q Less than

LE (0S),0Q Less than or equab
UNORD @Q,S Tests for nordered(NaN)
NEQ (UQ), US, 0Q 0S Not equal

NLT (Us),uQ Not less than

NLE (Us),uQ Not less than or equab
ORD @Q,S Tests for adered (not NaN)
NGE Us uQ Not greater than oequalto

vlb DRAFT 2May 2011

Intel® Advanced Vector Extensions | 17

Type Flavors Meaning

NGT Us uQ Not greater than

FALSE 0Q0S Comparison is always false
GE 0S 0Q Greater than or equab

GT 0S 0Q Greater than

TRUE uqQus Comparison is always true

Finally, here are all thelntel® AVX instructions:

Arithmetic

Description

(V) [ADDSUB/MUL/DIV] [P/S][D/S

]

Add subtract/ multiply/ divide packed scalardouble/ single

(V)ADDSUBP[D/S]

Packeddoublée/ singleadd and subtract alternating indices

(V)DPP[D/S]

Dot product, based on immediate mask

(V)HADDP[D/S]

Horizontallyadd

(V) [MIN/ MAX [P/S][D/S]

Min/max packed scalardoublée/ single

(V)MOVMSKP[D/S]

Extractdouble/ singlesign mask

(V)PMOVMSKB

Makea mask consistingof the most significant bits

(V)MPSADBW

Multiple sum of absolute differences

(V)PABS[B/W/D]

Packedabsolute value on bytes/words/doublewords

(V)P [ADDSUB] [B/W/D/ Q]

Add subtract packed bytes/words/doublewords/quadwords

(V)PADD[S/U]S[B/W]

Add packed signed/unsigned with saturation bytes/words

(V)PAVG[B/W]

Average packed bytes/words

(V)PCLMULQDQ

Carryless multiplication quadword

(V)PH [ADDSUB] [W/D]

Packechorizontaladd/ subtract word/doubleword

(V)PH [ADDSUB] SW

Packed horizontaadd/ subtract with saturation

(V)PHMINPOSUW

Min horizontal unsigned word and position

(V)PMADDWD

Multiply and add packethtegers

(V)PMADDUBSW

Multiply unsigned bytes and signed bytes into signed words

(V)P [MIN/ MAX [S/U][B/W/D]

Min/maxof packed signed/unsigned integers

(V)PMUL[H/L][S/UIW

Multiply packed signed/unsigned integers and store high/low result

vlb DRAFT 2May 2011

18 Intel® Advanced Vector Extensions

Arithmetic Description

(V)PMULHRSW Multiply packedunsignedwith round andshift

(VIPMULHW Multiply packed integers and store high result

(V)IPMULL[W/D] Multiply packed integers and store low result

(V)PMUL(U)DQ Multiply packed (un)signed doubleword integers and store quadword
(V)PSADBW Compute sum of absolute differences of unsigned bytes

(V)PSIGN[B/W/D]

Changehe sign on each element in one operand basedlansign inthe
other operand

(V)PS[L/R]LDQ

Byte shiftleft/right amount in operand

(V)SLIL/AR/LR][W/D/Q]

Bit shiftleft/arithmetic right/logicalright

(V)PSUB(U)S[B/W]

Packed (un)signed subtract with (un)signed saturation

(V)RCP[P/S]S

Compute approximate reciprocal packed scalarsingle precision

(V)RSQRT[P/S]S

Compute approximate reciprocal of square root of packed#scsingle
precision

(V)ROUNDIP/S][D/S]

Round packed/scalatouble/ single

(V)SQRTIP/S][D/S]

Square root of packed/scaldouble/single

VZERQ ALL/UPPER]

Zeroall/upper half of YMM registers

Comparison

Description

(V)CMP[P/S][D/S]

Compare packed/scalaouble/ single

(V)COMIS[S/D]

Compare scalallouble/ single, SetEFLAGS

(V)PCMP[EQ/GT][B/W/D/Q]

Compare packed integers fequality/ greater than

(V)PCMP[E/STRI[I/M]

Compare explicit/implicit length strings, return index/mask

Control

Description

V[LD/ST] MXCSR

Load store MXCSR control/status register

XSAVEOPT Save processor extended states optimized
Conversion Description
(V)CVTx2y Convert typexto typey, wherex andy are chosen from

vlb DRAFT 2May 2011

Intel® Advanced Vector Extensions | 19

DQandP[D/S]
[P/S]s and[P/S] D, or
andsi.
Load/store Description
VBROADCAST[SS/SD/F128] Load with broadcadioads single value into multiple locations)
VEXTRACTF128 Extract128-bit floating-point values
(VJEXTRACTPS Extract packed single precision

VINSERTF128

Insert packedloating-point values

(V)INSERTPS

Insert packed singlprecision values

(V)PINSR[B/W/D/Q]

Insert integer

(V)LDDQU

Move quad unalignethteger

(V)MASKMOVDQU

Store selected bytes of double quadword with Hint

VMASKMOVP([D/S]

Conditional SIMpackedload/store

(V)MOV[AUIP [D/S]

Move aligned unalignedpackeddoublée/ single

(V)MOV[D/Q]

Move doubleword/quadword

(V)MOVDQIA/U]

Movedouble toquadaligned/unaligned

(V)MOV[HL/LH]P[D/S]

Move highto-low/low-to-high packed double/single

(V)MOV[H/L]P[D/S]

Move high/low packediouble/ single

(V)MOVNT[DQ/PD/PS]

Move packed integersioubled singlesusinga non-temporal hint

(V)MOVNTDQA

Move packed integers usingnon-temporal hint, aligned

(V)MOVS[D/S]

Move or merge scalatouble/ single

(V)MOVS[H/L]DUP

Movesingle odd/even indexedingles

(V)PACK[U/S]SW[B/W]

Pack with unsigned/signed saturation on bytes/words

(V)PALIGNR

Byte align

(V)PEXTR[B/W/D/Q]

Extract integer

(V)PMOV[S/Z]X[B/W/D][W/D/Q]

Packed move with sign/zero extend (onpyin length ~ , DD, DW etc
disallowed)

Logical

Description

vlb DRAFT 2May 2011

20 Intel® Advanced Vector Extensions

Logical

Description

(V) [AND ANDN/OR]P[D/S]

Bitwise logicahND AND NOT ORof packeddouble singlevalues

(V)PAND(N) LogicalAND (NOT)
(V)P [ORXOR] Bitwise logicabH exclusive OR
(V)PTEST Packed bit test, set zero flag if bitwissDis allo

(V)UCOMIS[D/S]

Unordered compare scaldoublegsinglesand seteEFLAGS

(V)XORP[D/S]

Bitwise logicakorof packeddouble/ single

Shuffle

Description

(V)BLENDP[D/S]

Blend packedioublée single selectselements based on mask

(V)BLENDVP[D/S] Blend values

(V)MOVDDUP Copies even values to all values
(V)PBLENDVB Variable blend packed bytes
(V)PBLENDW Blend packed words

VPERMILP[D/S]

Permutedoublée/ singlevalues

VPERM2F128

Permutefloating-point values

(V)PSHUF[B/D]

Shuffle packed bytes/doublewords based on immediate value

(V)PSHUF[H/L]W

Shuffle packed high/low words

(V)PUNPCK[H/L][BW/WD/DQ/QDQ]

Unpack high/low data

(V)SHUFP[D/S]

Shuffle packed double/single

(V)UNPCK[H/L]P[D/S]

Unpack and interleave packed/scatfoubled singles

AES Description

AESENC/AESENCLAST Perform one round of AES encryption
AESDEC/AESDECLAST Perform one round of AES decryption
AESIMC Perform the AE&BvMixColumn transformation

AESKEYGENASSIST

AESRRound Key Generation Assist

Future Instructions

Description

[RD/WR][F/G]SBASE

Readfvrite FS/GS register

vlb DRAFT 2May 2011

Intel® Advanced Vector Extensions | 21

RDRAND Read random number (into r1632,r64)

VCVTPH2PS Convert 16bit floats to single precisiofioating-point values
VCVTPS2PH Convertsingleprecision values to 1Bit floating-point values

FMA Each [z] is the string 132 or 213 or 231, giving the order the operands

A,B,C are used in:
132 is A=AC+B
213 is A=AB+C
231 is A=BC+A

VFMADDIZ][P/S][D/S]

Fused multiply add Arl* r2 +r3 for packed scalarof doublée/single

VFMADDSUB[z]P[D/S]

Fused multiply alternatingdd/ subtract of packeddoublée/ single
A=rl*r2+r3 for odd index, A rl* r2-r3 for even

VFMSUBADD[z]P[D/S]

Fused multiply alternatingubtract/ add of packeddouble/single A=r1* r2-
r3 for odd index, A rl* r2+r3 for even

VFMSUB[Z][P/S][D/S]

Fused multiply subtract Arl * r2-r3 of packed scalardoublée/single

VFNMADDI[z][P/S][D/S]

Fused negative multiply add packedscalardouble/single A=-r1* r2+r3

VFNMSUBI[z][P/S][D/S]

Fused negative multiply subtract pdcked scalardouble/single A=-
r1*r2-r3

vlb DRAFT 2May 2011

	Introduction to Intel® Advanced Vector Extensions
	Instruction Set Overview
	Intel® AVX Instruction Classes
	Future Additions

	Availability and Support
	Detecting Availability and Support

	Usage
	Visual Studio* 2010

	Mandelbrot Example
	Conclusion
	For More Information
	Appendix A: Instruction Set Reference

